数学联邦政治世界观
超小超大

0=1莱茵哈特基数(数学构造)

0=1莱茵哈特基数构造:x>0 当x≥1,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1/x+lnx-1=1/x+1nx,因为x≥1,则lnx≥0,1/x>0,所以f’(x)>0, 所以f(x)在[1,+oo)上递增, 则f(x) ≥f(1)=0-1+1=0,又(x-1)≥0 所以(x-1)f(x)≥0.当1>x>0,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1x+lnx-1=1/x

在集合论中0=1的意思

是不一致证明的典范例子。

根据哥德尔定理,初等算术系统可能是不一致的,倘若初等算术不一致,则你能在其中找到一个有限长度的0=1的证明。

在一致性强度的证明当中通常都是以证明不存在0=1的证明为主。

一类大基数假设被冠以0=1类则在于这类假设会导致存在一个已被发现的0=1的证明,注意,是已被发现。

根据哥德尔定理,一致性强度越强,并不意味着就越安全越可靠,反倒是越危险越接近不一致,比如远比初等算术要强的ZFC就远比初等算术更可能不一致,而那些更强的大基数假设,只能说是尚未发现0=1的证明。

所以,对于一个非标准的算术模型中的见证0=1的非标准自然数,你也可以称这样的自然数为0=1类基数。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

茈椛 连载中
茈椛
凌苪玥
这是一个为了修为连人性都可以丢去的世界,但女主不清楚,在某天她得知了自己椛人的身份,她乐观应对,故事由此展开
0.3万字8个月前
秋桂花风 连载中
秋桂花风
蛙小呱
我oc小说,因为画技和屎一样,所以来写小说了
0.5万字8个月前
今天还了债吗? 连载中
今天还了债吗?
元霏
元霏因为太无聊,坑了一堆人(元霏有点恶毒女配的感觉,不喜勿喷)
1.1万字5个月前
噬月羁绊 连载中
噬月羁绊
青秋_094204047
一个背负着沉重过去的吸血鬼,他孤傲、冷漠,却在遇见纯真善良的少女芈祝后,逐渐敞开了心扉。芈祝,一个对未知世界充满好奇的普通人类,她的勇敢和坚......
1.4万字5个月前
校园快穿,清纯小白莲暴力斩妖 连载中
校园快穿,清纯小白莲暴力斩妖
蛋炒饭很香
校园妖魔横行,破解学生惨案。惨死的学生成为害人的妖,背后都有一个痛苦的事件。
0.4万字2个月前
摆烂小说管理人 连载中
摆烂小说管理人
乐干面呀
扣门大学生为捡十块钱被车撞死后在小说管理局打工,选择摆烂的他她在没钱吃饭后还是接取了任务,一向不太正经的她做任务竟然这么靠谱,其他小说管理人......
10.0万字1个月前