数学联邦政治世界观
超小超大

0=1莱茵哈特基数(数学构造)

0=1莱茵哈特基数构造:x>0 当x≥1,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1/x+lnx-1=1/x+1nx,因为x≥1,则lnx≥0,1/x>0,所以f’(x)>0, 所以f(x)在[1,+oo)上递增, 则f(x) ≥f(1)=0-1+1=0,又(x-1)≥0 所以(x-1)f(x)≥0.当1>x>0,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1x+lnx-1=1/x

在集合论中0=1的意思

是不一致证明的典范例子。

根据哥德尔定理,初等算术系统可能是不一致的,倘若初等算术不一致,则你能在其中找到一个有限长度的0=1的证明。

在一致性强度的证明当中通常都是以证明不存在0=1的证明为主。

一类大基数假设被冠以0=1类则在于这类假设会导致存在一个已被发现的0=1的证明,注意,是已被发现。

根据哥德尔定理,一致性强度越强,并不意味着就越安全越可靠,反倒是越危险越接近不一致,比如远比初等算术要强的ZFC就远比初等算术更可能不一致,而那些更强的大基数假设,只能说是尚未发现0=1的证明。

所以,对于一个非标准的算术模型中的见证0=1的非标准自然数,你也可以称这样的自然数为0=1类基数。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

琉璃仙途 连载中
琉璃仙途
清辰明月
观影忆往昔,未来载无限。“世界万灵皆具善恶两面,心灵本就复杂变幻莫测,难以一言以蔽之,怎能轻易定夺善恶!”——琉璃“嫉妒什么的最讨厌了,别人......
6.9万字12个月前
崩裂的水火之情 连载中
崩裂的水火之情
星入梦海
刘雨成功复活了三个人,回到了世界,开展了与黑凤蝶的大战,但被朋友亲手推下遗忘海,但最后……
1.7万字11个月前
我在无序副本里弑神 连载中
我在无序副本里弑神
秋南栀
「出逃者」浅羽x「神牌」林沨林沨在求死时意外进入副本系统,为了与系统达成交易,获得【起死回生】复活妹妹,林沨选择留在系统成为玩家在过副本途中......
6.5万字10个月前
凌安诺 连载中
凌安诺
埋葬_00207106129821649
一位是清冷的大师兄,一位是皎皎如月的小师妹,他们是人人称赞的模范夫妻……只是小师妹消声灭迹,寻不到人影。大师兄身负重伤,昏迷不醒……
0.7万字9个月前
神界诸多事 连载中
神界诸多事
将军背诗
围绕神界的几位神明而展开的故事,也有其展开的平行世界的故事
3.9万字8个月前
失业后我靠评价网文暴富了 连载中
失业后我靠评价网文暴富了
白飞升
16.4万字4个月前