数学联邦政治世界观
超小超大

0=1莱茵哈特基数(数学构造)

0=1莱茵哈特基数构造:x>0 当x≥1,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1/x+lnx-1=1/x+1nx,因为x≥1,则lnx≥0,1/x>0,所以f’(x)>0, 所以f(x)在[1,+oo)上递增, 则f(x) ≥f(1)=0-1+1=0,又(x-1)≥0 所以(x-1)f(x)≥0.当1>x>0,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1x+lnx-1=1/x

在集合论中0=1的意思

是不一致证明的典范例子。

根据哥德尔定理,初等算术系统可能是不一致的,倘若初等算术不一致,则你能在其中找到一个有限长度的0=1的证明。

在一致性强度的证明当中通常都是以证明不存在0=1的证明为主。

一类大基数假设被冠以0=1类则在于这类假设会导致存在一个已被发现的0=1的证明,注意,是已被发现。

根据哥德尔定理,一致性强度越强,并不意味着就越安全越可靠,反倒是越危险越接近不一致,比如远比初等算术要强的ZFC就远比初等算术更可能不一致,而那些更强的大基数假设,只能说是尚未发现0=1的证明。

所以,对于一个非标准的算术模型中的见证0=1的非标准自然数,你也可以称这样的自然数为0=1类基数。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

无限流——这个NPC是如此的独特 连载中
无限流——这个NPC是如此的独特
彼岸之舟*
作为无限流游戏中的固定NPC,白景欢在同一个故事里轮回过许多次,也遇见过许多人,可那些都不是他所期盼的。直到有一天,他觉醒了意识,也再次见到......
30.7万字12个月前
极:粘人鬼 连载中
极:粘人鬼
白xin怡
就不剧透了宝宝们
3.0万字9个月前
慕容归零 连载中
慕容归零
丽志_25672919270903971
慕容前世嫁给了蔡飞,蔡飞家暴直到而死都不明白是,原来蔡飞和慕楠早就勾搭在一起了。原来墨卿才是真正的爱我的,把她抱在怀里哭。蔡飞和慕楠你把墨卿......
5.1万字7个月前
墨色轩:以命换天机 连载中
墨色轩:以命换天机
狸晟
深夜的旧城区街道空无一人,我因妹妹失踪多日绝望徘徊,当时钟敲响十下,街角突然浮现一座挂着紫色灯笼的阴森小楼,雕花木门无声开启,穿紫裙黑袍的女......
1.4万字6个月前
双尊重生录之情有千千结劫 连载中
双尊重生录之情有千千结劫
听心m
女主楚凌雪,本是圣天宗的天之骄女圣女。实力已经达到了至尊境。然而,他的身份始终是个谜。天,其天赋神界无人可比。然而,无意间意外得到了1套至尊......
2.7万字6个月前
穿越之我是挡箭牌 连载中
穿越之我是挡箭牌
罗云箐
陆霖是现代人,在机缘巧合下突然穿越到了一个神奇的地方,一个名为小补丁的系统君引导着他一步步攻略邵雪,他们从凌南城到天山南北,经历了太多太多事......
0.7万字4个月前