数学联邦政治世界观
超小超大

0=1莱茵哈特基数(数学构造)

0=1莱茵哈特基数构造:x>0 当x≥1,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1/x+lnx-1=1/x+1nx,因为x≥1,则lnx≥0,1/x>0,所以f’(x)>0, 所以f(x)在[1,+oo)上递增, 则f(x) ≥f(1)=0-1+1=0,又(x-1)≥0 所以(x-1)f(x)≥0.当1>x>0,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1x+lnx-1=1/x

在集合论中0=1的意思

是不一致证明的典范例子。

根据哥德尔定理,初等算术系统可能是不一致的,倘若初等算术不一致,则你能在其中找到一个有限长度的0=1的证明。

在一致性强度的证明当中通常都是以证明不存在0=1的证明为主。

一类大基数假设被冠以0=1类则在于这类假设会导致存在一个已被发现的0=1的证明,注意,是已被发现。

根据哥德尔定理,一致性强度越强,并不意味着就越安全越可靠,反倒是越危险越接近不一致,比如远比初等算术要强的ZFC就远比初等算术更可能不一致,而那些更强的大基数假设,只能说是尚未发现0=1的证明。

所以,对于一个非标准的算术模型中的见证0=1的非标准自然数,你也可以称这样的自然数为0=1类基数。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

外星少女在民国 连载中
外星少女在民国
忆轩孤梦
[这一本我更新的非常慢,原因是在于想完结其他本,然后再更新这个。先看其他的哦]【一本男女都可以看的小说】她是银河深处的紫幽星少女,身怀魔力。......
4.5万字3周前
快穿之芙蓉帐暖 连载中
快穿之芙蓉帐暖
玉樱樱
(快穿+系统+虐渣+爽文+演戏+大美人+渣女+男主碎片)渣女梨依儿快穿到各个小世界围绕在各个大佬周围。完成任务后就不甩他们了,主搞自己的事业......
3.2万字2周前
喜美:朦胧梦境 连载中
喜美:朦胧梦境
湫日有棂
禁一切作者:湫日有棂【祈念文学社】从学生时期便认识的我们,为什么最后没能走到一起?一场意外把美幻曦带到副本世界,需要前往一个个世界攻略喜易言......
14.7万字1周前
十铭:终致歉——刹那 连载中
十铭:终致歉——刹那
刹那乂
一位少女死后进入游戏开始找回记忆的热血故事“如果我的死,能换到重头再来……”“好久不见”“嗯,好久不见”本书为个人oc世界!原创!禁止抄袭角......
0.4万字1周前
疯批实验体 连载中
疯批实验体
鸢源儿
疯批病娇六人✘单纯张
3.3万字5天前
魇惡知境 连载中
魇惡知境
健力老登
俅谙与笙暮
1.2万字昨天