数学联邦政治世界观
超小超大

0=1莱茵哈特基数(数学构造)

0=1莱茵哈特基数构造:x>0 当x≥1,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1/x+lnx-1=1/x+1nx,因为x≥1,则lnx≥0,1/x>0,所以f’(x)>0, 所以f(x)在[1,+oo)上递增, 则f(x) ≥f(1)=0-1+1=0,又(x-1)≥0 所以(x-1)f(x)≥0.当1>x>0,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1x+lnx-1=1/x

在集合论中0=1的意思

是不一致证明的典范例子。

根据哥德尔定理,初等算术系统可能是不一致的,倘若初等算术不一致,则你能在其中找到一个有限长度的0=1的证明。

在一致性强度的证明当中通常都是以证明不存在0=1的证明为主。

一类大基数假设被冠以0=1类则在于这类假设会导致存在一个已被发现的0=1的证明,注意,是已被发现。

根据哥德尔定理,一致性强度越强,并不意味着就越安全越可靠,反倒是越危险越接近不一致,比如远比初等算术要强的ZFC就远比初等算术更可能不一致,而那些更强的大基数假设,只能说是尚未发现0=1的证明。

所以,对于一个非标准的算术模型中的见证0=1的非标准自然数,你也可以称这样的自然数为0=1类基数。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

崩裂的水火之情 连载中
崩裂的水火之情
星入梦海
刘雨成功复活了三个人,回到了世界,开展了与黑凤蝶的大战,但被朋友亲手推下遗忘海,但最后……
1.7万字4个月前
琴落玉湖 连载中
琴落玉湖
烟霏雨
这是一个民族的崛起与消亡史,尽管今天的人几乎不曾听过它的故事,但那两个女人的勇敢,同雪山、阳光一样神奇不朽
1.3万字4个月前
星河为灯 连载中
星河为灯
冥夜90410
姜瑜是惊悚世界无限流副本由怨念产生的章鱼鬼怪,因为年少轻狂,去挑衅劳什子大佬被绑定为宠物带出副本,从此走上打工人的道路,开启了他跌宕起伏(苦......
2.9万字3个月前
奇思妙想,小说合集 连载中
奇思妙想,小说合集
king2003
此文不只有一个故事,很多故事,每一个故事都是短篇小说。第一篇:花心痞帅硬汉;季北辰VS独立理智坚韧冷艳美女;莫希。(现代言情,花心浪子遇真爱......
6.1万字2个月前
别了亲爱的:用情至深 连载中
别了亲爱的:用情至深
不知名诗人
我又活了,拥有了新的身份,唯一没变的是对她的爱,这次我绝对要保护好她,熟悉的环境,重走一遍的剧情,我绝对不会让她再受伤了,我不会再唯唯诺诺,......
1.4万字1个月前
凤隐山河 连载中
凤隐山河
二酱紫
《凤隐山河》讲述现代法医林锦书穿越架空王朝。凭借刑侦技术破解《璇玑录》死局的故事。当她腕间赤凤纹引发时空裂隙,竟发现镇北王世子谢珩的“尸体”......
2.7万字1个月前