数学联邦政治世界观
超小超大

(数学定理)篇章

(Schröder-Bernstein)定理的证明:

(card X≤cardY)∧(card Y ≤ card X)⇒(card X= card Y)

的以下证明.

◄ 只需证明:如果集合X,Y,Z满足X⊃Y⊃Z且card X=card Z,则card X=card Y.设f:X → Z是双射,那么,例如,可以用以下方式给出双射g:X→Y:

g(x)={f(x),如果对于某个 n ∈ N 有x ∈ fⁿ(X)\jⁿ(Y),

{x,在其余情况下.

这里 fⁿ=f◦· · ·◦f是映射 f 的 n 次迭代,而N是自然数集.►

Schröder-Bernstein定理在主流的数学分析教材中都有介绍,叙述简单,意义也很清晰:

设 f:X → Y,g:Y → X 均为单射,则存在 X,Y 间的双射。

但其证明并不像定理本身那样简洁,Зорич和于品的数学分析教材中都把这一证明编成了习题,本文采用的即是于品老师讲义中的处理方法。

考虑到 f:X → f(X),g⁻¹:g(Y) → Y 均为双射,只需找到 X 的一个分划 A|B ,使得 f(A)|g⁻¹(B) 也是 Y的分划即可。由于 f,g 均为单射,故原条件可转化为:

条件可转化为:

g◦f(A)∩g∘g⁻¹(B)=∅ (1)

g◦f(A)∪g◦g⁻¹(B)=g◦f(A)∪B=g(Y)

(2)

首先考虑条件 (1) :

记 X′=X−g(Y) , g◦f=h:X→X ,条件 (1) 可改写为: X′∪h(A)⊂A 。故考虑 X 的子集类

F={U⊂X|X′∪h(U)⊂U}

显然, X∈F ,故 F 非空;

其次,对 ∀U∈F,X′∪h(U)⊂U ⇒ X′∪h[X′∪h(U)]⊂X′∪h(U), 则:

X′∪h(U)∈F ;

另外, F对任意交封闭: ∀{Uα}⊂F,Λ={α}为任意指标集, ⋂α∈ΛUα∈F。

证明: X′∪h(⋂α∈ΛUα)⊂X′∪⋂α∈Λh(Uα)⊂X′∪⋂α∈ΛUα=⋂α∈ΛUα,得证。

其次考虑条件件 (2):

h(A)∪B={[X′∪h(A)]∩g(Y)}∪B⊂[A∩g(Y)]∪B=g(Y)

故条件 (2) 成立当且仅当

X′∪h(A)=A

显然, F 的所有元素之交 A₀=⋂U∈F U∈F 满足要求:

一方面, X′∪h(A₀)⊂A₀ ;

另一方面,由于 A0是 F 中所有元素的交, X′∪h(A₀)∈F ,故

A₀ ⊂ X′∪h(A₀) 。

从而有: X′∪h(A₀)=A₀

至此,我们已得到了一个双射

φ:X → Y

φ(x)

{f(x)… if x ∈ A₀

{g⁻¹(x)… if x ∈ Ⅹ-A₀

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

辞秋 连载中
辞秋
玫娇儿
“我不怀疑真心……可真心瞬息万变……”“明明是你!你是杀了我一万三千二百族人!是你们!”“早知他来……我就不来了……”“过往此生……烟消云散......
0.7万字3个月前
师妹修仙:笑闹青云间 连载中
师妹修仙:笑闹青云间
南山竹海^
本以为修仙之路严肃艰辛,可谁能想到竟有这么一位沙雕师妹,将整个修仙界搅得欢笑不断!看她如何在青云间摸爬滚打,凭借自己的无厘头和独特魅力,闯出......
2.2万字3个月前
送子观音狠纠缠 连载中
送子观音狠纠缠
摸金倾城
我是个异数……我甚至不知道自己到底是种什么存在……我的双眼从出生那天起就能看到鬼神,甚至感觉到他们刻意收敛起来的气息。我的身体里之前还住着一......
14.9万字2个月前
我将不断追寻精神的本真:两个人的孤独方程 连载中
我将不断追寻精神的本真:两个人的孤独方程
*夜半太阳*
有关于维持时空稳定的失落之石遭到破坏使时空重组,发生在混沌世界的一个小小故事
0.5万字2个月前
巫女日記 连载中
巫女日記
Sumphote
架空世界,主角安以琪·苏·图兰,一半萨摩一半库兰,讲述其上大学后发生的一系列事情,不断成长,渐渐明白自己意欲何为,想要坚持父母那个梦想——建......
9.0万字1个月前
变成了相方的猫 连载中
变成了相方的猫
高V不会
简介正在更新
29.6万字4天前