数学联邦政治世界观
超小超大

特殊篇章(数学解释)六

σ完全性和超幂模型的秩:

我们知道如果 S 是一个集合且 U 是 S 的一个超滤,那么 V≺Vˢ/≡U ,但 Vˢ/≡U 是一个有秩的模型吗?关于这个问题我们有如下定理:

定理: U 是 σ 完全的,当且仅当 VS/≡U 有秩的。

证明:假设 U 是 σ 完全的,如果 Vˢ/≡U 是无秩的,那么存在一组函数 {fₙ}ₙ<ω 满足 {x∈S:fₖ₊₁(x)∈fₖ(x)}∈U ,因为 σ 完全性,那么 ⋂ₖ∈ω{x∈S:fₖ₊₁(x)∈fₖ(x)}∈U ;因为 ∅∉U ,因此存在 x∈S 满足 f₀(x)∋f₁(x)∋⋯ ,这与 V 的正则公理矛盾,反证 Vˢ/≡U 有秩。

假设 U 不是 σ 完全的,那么存在 {Aₙ}ₙ∈ω 满足 Aₙ∈U∧⋂ₙ Aₙ ∉ U ,设 Bₙ=Aₙ − ⋂ᵢ∈ω Aᵢ ,那么有 Bₙ∈U∧⋂ₙ Bₙ=∅ ;进一步设 Cₙ=⋂ᵢ≤ₙ Bᵢ ,那么有 Cₙ∈U∧⋂ₙ Cₙ =∅∧Cᵢ ⊇Cᵢ₊₁ 。

定义函数 gᵢ:Cᵢ → ω ,其中 gᵢ(x)=min{k−i:x∉Cₖ} ,对于其它 x∈S−Cᵢ,我们有 gᵢ(x)=0 。注意到 gᵢ₊₁(x)∈gᵢ(x) 当且仅当 x∈Cᵢ ,因此 {x∈S:gᵢ₊₁(x)∈gᵢ(x)}∈U ,则 [g₀]∋*[g1]∋* ⋯ 在 Vˢ/≡U 成立,因此 Vˢ/≡U 是无秩的,定理成立。 ⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

(科幻万人迷)渣女改造系统 连载中
(科幻万人迷)渣女改造系统
吃人不放盐23
—这是一个社会潜在型人渣,被一个莫名奇妙的系统培养成社会栋梁最后成神的故事—林一览一直都知道自己不是个好东西,但从来没有想过,自己会因为渣得......
1.7万字11个月前
道藏玄止 连载中
道藏玄止
云舟隐鹤
腹黑疯批事业派女主披荆斩棘,干翻倒霉亲戚,打趴狐狸窝长老会,与魔王男主相爱相杀的故事。【注意】本文群像风,除男女主外有多对cp,各种都有,但......
71.7万字7个月前
ourname 连载中
ourname
木楚晴天
一丢丢科幻,青春的故事,我们在一起的美好日子和一些无法用言语理解的事情
2.3万字6个月前
除了六哥,我们家,全都是重生的 连载中
除了六哥,我们家,全都是重生的
半生忧伤
(除了主cp外,还有副cp以及同人文cp)先虐后甜百里滟是东临国将军府的嫡小姐,爹爹是东陵国的百里大将军,她上面有六个哥哥,个个人中龙凤…东......
4.4万字6个月前
上清神域 连载中
上清神域
雪梦妍
冰神还有生神之间的感情故事以及和龙神的恩怨,冰神的母亲被龙神神识所控制,而他的小姨,因为经受不住力量的诱惑,从而成为龙神的傀儡,一直和冰神作......
1.6万字3个月前
快穿:玉碎纯良 连载中
快穿:玉碎纯良
朽木生华
[女主是古代人][半坏半好][节奏快]沈玉纯,名带温润,性藏阴鸷。洛城沈府的覆灭,白府深宅的构陷,让本就凉薄的骨血彻底淬了毒——半生为棋,天......
10.6万字2个月前