数学联邦政治世界观
超小超大

Weierstrass逼近定理

Weierstrass逼近定理是数学分析中的核心定理。陈述如下:

Weierstrass逼近定理

设 f(x) 是 [α,b] 上的连续函数,则存在多项式函数列 {fₙ(x)} ,使得 fₙ(x) 一致收敛于 f(x)

附注 不失一般性,下面只对于 [α,b]=[0,1] 的情形证明。

证明

由 f 在 [0,1] 连续,故有界 |f|≤M ,且在 [0,1] 一致连续,即

m

\[∀ε>0, ∃δ>0,当 |─−x|<δ时,

m ε n

|f(─)−f(x)|<─\]

n 2

构造Bernstein多项式 m

\[Bₙ(x)=∑ⁿₘ₌₀Cᵐₙxᵐ(1−x)ⁿ⁻ᵐf(─)\]

n

构造随机变量 X∼B(1,x) ,以及 X 的独立同分布随机序列 {Xₙ} ,则 Sₙ=∑ⁿₖ₌₁ Xₖ ∼B (n,x),且 E(f(Sn

─ m

n))=∑ⁿₘ₌₁f(─)b(m;n,x)=Bₙ(x)

n

此外

(Sn) (1)

E ──=──nx=x

(n) (n)

(Sn) 1 x(1−x)

D ──=──nx(1−x)=────

(n) n² n

1

≤ ─

2

由Chebyshev不等式

Sₙ 1

P(|─−x|≥δ)≤──

n nδ²

|Bₙ(x)−f(x)|

Sₙ Sₙ

─ ─

=|E(f(n)−f(x))|≤E|f(n)−f(x)|

\[

Sₙ

=E(|f(n)−f(x)|1{|Sn

n−x|≥δ})

Sₙ Sₙ

── ──

+E(|f(n)−f(x)|1{|n−x|<δ})\]

Sₙ Sₙ

─ ─

对第一项, \[E(|f(n)−f(x)|1{|n−x|≥δ})

m m

── ──

=∑{m:|n−x|≥δ}|f(n)

−f(x)|P(Sₙ=m)\]

\[≤2M∑{m:|m

──

n−x|≥δ}P(Sₙ

Sn

──

=m)=2MP(|n−x|≥δ)

2M

≤ ── \]

nδ²

Sₙ Sₙ

── ──

对第二项, \[E(|f(n)−f(x)|1{|n−x|<δ})

m m

── ──

=∑{m:|n−x|<δ}|f(n)−f(x)|P(Sₙ=m)\]

m

ε ──

<──∑{m:|n−x|<δ}P(Sₙ=m)

2

Sₙ

ε ── ε

=──P(|n−x|<δ)≤──

2 2

2M ε

|<──+──

因此 |Bₙ(x)−f(x) nδ² 2 。

4M

取 N=──

εδ² ( N 与 x 无关),则当n>N 时, ∀x∈[0,1], |Bₙ(x)−f(x)|<ε ,由此得到 Bₙ(x) 一致收敛于 f(x) ◻

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

血之海 连载中
血之海
笔墨sty
台风之爱恨,两界之种种事--水与火,可以相容
3.5万字5个月前
魇惡知境 连载中
魇惡知境
健力老登
俅谙与笙暮
1.2万字5个月前
星辰荣耀之冠军之路 连载中
星辰荣耀之冠军之路
同学:好久不见
以下是为这部小说生成的作品简介:《星辰荣耀之冠军之路》讲述了性格内向但极具电竞天赋的女孩林悦瑶,在机缘巧合下被职业战队教练发掘,从此踏上电竞......
7.0万字5个月前
幻想:不公定律—无罪世界 连载中
幻想:不公定律—无罪世界
维治托劳斯
嘈杂的声音充斥在教室中,所有人都嘻皮笑脸的,一切都很和谐,但是在这片虚伪的和谐中,藏着许多不为人知的恶劣——对同学的另眼相待,谣言乱飞,校园......
0.3万字5个月前
清依传 连载中
清依传
乔忆娇
原来,有一个人,从不在身边,心里却总是惦念!有一段情,隔着天涯,却倍感温暖!有一种承诺,不需说一生一世,可你知道此生此世,你注定与他相随……......
2.6万字4个月前
星缘栀子 连载中
星缘栀子
是洛小允吖
初恩映月栀黎凝香
1.6万字3天前