数学联邦政治世界观
超小超大

Weierstrass逼近定理

Weierstrass逼近定理是数学分析中的核心定理。陈述如下:

Weierstrass逼近定理

设 f(x) 是 [α,b] 上的连续函数,则存在多项式函数列 {fₙ(x)} ,使得 fₙ(x) 一致收敛于 f(x)

附注 不失一般性,下面只对于 [α,b]=[0,1] 的情形证明。

证明

由 f 在 [0,1] 连续,故有界 |f|≤M ,且在 [0,1] 一致连续,即

m

\[∀ε>0, ∃δ>0,当 |─−x|<δ时,

m ε n

|f(─)−f(x)|<─\]

n 2

构造Bernstein多项式 m

\[Bₙ(x)=∑ⁿₘ₌₀Cᵐₙxᵐ(1−x)ⁿ⁻ᵐf(─)\]

n

构造随机变量 X∼B(1,x) ,以及 X 的独立同分布随机序列 {Xₙ} ,则 Sₙ=∑ⁿₖ₌₁ Xₖ ∼B (n,x),且 E(f(Sn

─ m

n))=∑ⁿₘ₌₁f(─)b(m;n,x)=Bₙ(x)

n

此外

(Sn) (1)

E ──=──nx=x

(n) (n)

(Sn) 1 x(1−x)

D ──=──nx(1−x)=────

(n) n² n

1

≤ ─

2

由Chebyshev不等式

Sₙ 1

P(|─−x|≥δ)≤──

n nδ²

|Bₙ(x)−f(x)|

Sₙ Sₙ

─ ─

=|E(f(n)−f(x))|≤E|f(n)−f(x)|

\[

Sₙ

=E(|f(n)−f(x)|1{|Sn

n−x|≥δ})

Sₙ Sₙ

── ──

+E(|f(n)−f(x)|1{|n−x|<δ})\]

Sₙ Sₙ

─ ─

对第一项, \[E(|f(n)−f(x)|1{|n−x|≥δ})

m m

── ──

=∑{m:|n−x|≥δ}|f(n)

−f(x)|P(Sₙ=m)\]

\[≤2M∑{m:|m

──

n−x|≥δ}P(Sₙ

Sn

──

=m)=2MP(|n−x|≥δ)

2M

≤ ── \]

nδ²

Sₙ Sₙ

── ──

对第二项, \[E(|f(n)−f(x)|1{|n−x|<δ})

m m

── ──

=∑{m:|n−x|<δ}|f(n)−f(x)|P(Sₙ=m)\]

m

ε ──

<──∑{m:|n−x|<δ}P(Sₙ=m)

2

Sₙ

ε ── ε

=──P(|n−x|<δ)≤──

2 2

2M ε

|<──+──

因此 |Bₙ(x)−f(x) nδ² 2 。

4M

取 N=──

εδ² ( N 与 x 无关),则当n>N 时, ∀x∈[0,1], |Bₙ(x)−f(x)|<ε ,由此得到 Bₙ(x) 一致收敛于 f(x) ◻

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

每个世界都在发生不同的事情 连载中
每个世界都在发生不同的事情
风中凌乱的
宝宝们,欢迎观看,希望宝子们喜欢,大家一起交流,可以告诉我,你想看的类型,我来写。
5.5万字6个月前
我在快穿世界里发疯(不是) 连载中
我在快穿世界里发疯(不是)
有价无市
女主蒋芸,因为一次意外,她来到了这个叫快穿的世界。并且结识了叫瑞瑞的系统。可是,她似乎失去了自己的记忆。于是她大手一摆,竟然来了,那就好好玩......
14.3万字5个月前
斗龙战士2之东方末与云知画 连载中
斗龙战士2之东方末与云知画
云知画
正义顽强的东方末和明媚坚毅的云知画从一开始的毒舌相向,到并肩经历种种困难与生离死别,最终成为彼此生命中不可或缺的“soulmate”的故事。......
1.9万字5个月前
别了亲爱的:用情至深 连载中
别了亲爱的:用情至深
不知名诗人
我又活了,拥有了新的身份,唯一没变的是对她的爱,这次我绝对要保护好她,熟悉的环境,重走一遍的剧情,我绝对不会让她再受伤了,我不会再唯唯诺诺,......
1.4万字1个月前
除了六哥,我们家,全都是重生的 连载中
除了六哥,我们家,全都是重生的
半生忧伤
(除了主cp外,还有副cp以及同人文cp)先虐后甜百里滟是东临国将军府的嫡小姐,爹爹是东陵国的百里大将军,她上面有六个哥哥,个个人中龙凤…东......
4.4万字3周前
跨界仙缘之苍穹之花 连载中
跨界仙缘之苍穹之花
小铃铛♡小蝴蝶
神幻小说,神冥两界的人不能在一起,他们为了彼此不惜付出生命代价…
5.5万字3周前