数学联邦政治世界观
超小超大

格的笛卡尔积的同余关系

设L,M 为两个格,定义 (L × M,∧,∨) 为(l₁,m₁) ∧ (l₂,m₂)=(l₁∧l₂,m₁∧m₂),(l₁,m₁)∨(l₂,m₂)=(l₁∨l₂,m₁∨m₂)。

定理:假设ψ 是 L × M 的同余关系,那么存在 L,M 上的同余关系 α,β 满足 α ⨂ β=ψ ,其中 α ⨂ β={[α,x),(b,y)]:(α,b)∈α,(x,y)∈β} 。反过来,对于任意 L,M 上的同余关系 α,β , α ⨂ β 都是 L × M 上的同余关系。

证明:首先证明第二个定理。假设[(α,x),(b,y)] ∈α ⨂ β,任选 (c,z)∈L × M,求 [(α∧c,x∧z),(b∧c,y∧z)]∈α ⨂ β。因为 (α,b)∈α → (α∧c,b∧c)∈α且 (x,y)∈β →(x∧z,y∧z)∈β,那么 [(α∧c,x∧z),(b∨c,y∨z)]∈α ⨂ β;同理可证 [(α∨c,x∨z),(b∨c,y∨z)]∈α ⨂ β,因此对于任意 L,M 上的同余关系 α,β ,α ⨂ β 都是 L × M 上的同余关系。

再证明第一个定理。假设ψ 是 L × M 的同余关系,定义 (α,b)∈α↔∃x∈M,[(α,x),(b,x)]∈ψ,注意到如果 [(α,x),(b,y)]∈ψ,那么有 [(α∧(α∨b),x∧x∧y),(b∧(α∨b),y∧x∧y)]∈ψ,即 [(α,x∧y),(b,x∧y)]∈ψ,进一步可得 [(α,y),(b,y)]∈ψ。因此我们有如下定理:如果存在 x,y∈M 满足[(α,x),(b,y)]∈ψ ,那么对于任意 z∈M 都有 [(α,z),(b,z)]∈ψ。因此我们可以把 α 的定义改为 (α,b)∈α ↔ ∀x ∈ M,[(α,x),(b,x)]∈ψ。

下面求α 是 L 的同余关系。由于 (α,b)∈α 蕴含 ∀x ∈ M,[(α,x),(b,x)]∈ψ,那么 [(α∧c,x),(b∧c,x)]∈ψ 和 [(α∨c,x),(b∨c,x)]∈ψ 成立,因此 α 是 L 的同余关系。同理,我们可以根据 ψ 诱导出 M 上的同余关系 β 。

下面证明ψ=α ⨂ β 。假设 [(α,x),(b,y)]∈ψ,那么 [(α,x),(b,x)]∈ψ 和 [(α,x),(α,y)]∈ψ,因此 (α,b)∈α 和 (x,y)∈β,可得 ψ ⊆ α ⨂ β;假设 (α,b)∈α 和 (x,y)∈β ,那么 (x∧y,x)∈β 和 (x∧y,y)∈β,因此 [(α,x∧y),(α,x)]∈ψ 和 [(b,x∧y),(b,y)]∈ψ 与 [(α,x∧y),(b,x∧y)]∈ψ,由 ψ 的传递性可得 [(α,x),(b,y)]∈ψ,即 ψ ⊇ α ⨂ β ,因此 ψ=α ⨂ β 。

上面的定理表明α,β 和 ψ 是一一对应关系,因此如果 L × M 的只有奇数个同余关系,那么 L,M 至少有一个是只有一个元素的格,因为两个及以上元素的格 L 至少有两个同余关系:相等关系和 L² 。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

皇帝的狐狸不好惹 连载中
皇帝的狐狸不好惹
嫣栀
一个是云狐山第一纨绔的狐仙云祁,平日里不是拔族长的胡子挖族长的酒,就是带着三只小狐狸去揍临山的妖兽顺带抢他们的灵果。一个是毫无权势被架空的废......
8.7万字2周前
极狱——重生之光 连载中
极狱——重生之光
桉姸
剧情跟随故事发展而来
0.7万字1周前
今有包包在锅锅 连载中
今有包包在锅锅
苏晴舟
一个肉包子出生的一个女主幻化成人形来到人间寻找千年泪,是一个用尽一生爱你留下眼泪-
0.6万字1周前
快穿:娇软万人迷 连载中
快穿:娇软万人迷
江鱼不是鱼
全员单箭头,一见钟情梗,万人迷,脑子寄存—
2.3万字5天前
垃圾断文章合集 连载中
垃圾断文章合集
一一默rycidxy
所有内容都为言情。这一本是黑历史。我自己写的一些篇章和和别人一起写的一些篇章,会汇集到这本书里。类型多样,风格多样。
1.8万字2天前
来自遥远云境国度的星月神话 连载中
来自遥远云境国度的星月神话
糖裕
遵守世界法的萝甜甜掌管星星法则,一直爱护着可爱的子民。从西界到东海的旅途由此展开。与一群可爱的同胞,拥有友谊,发现爱情,守护亲情。
0.5万字2天前