数学联邦政治世界观
超小超大

连续统基数

自然数集基数

定义自然数集基数:|N|=ℵ₀。

(κ<ℵ₀ ⇔ κ ∈ N)

自然数集基数运算

加法运算: ℵ₀+ℵ₀=ℵ₀

证明:令集合

A={αₙ|n ∈ N} B={bₙ|n ∈ N},

A≈B≈N ⇒ |A|=|B|=ℵ₀ 。构建序列

c₂ₖ=αₖ

(cₙ)∞ₙ₌₀={ 则

c₂ₖ₊₁=bₖ

A∪B={cₙ|n ∈ N} ⇒ |A+B|=ℵ₀+ℵ₀=|C|=ℵ₀,得证。

推论:n+ℵ₀=ℵ₀

证明:由

n>0 ⇒ ℵ₀ ≤ n+ℵ₀ ≤ ℵ₀+ℵ₀=ℵ₀ ⇒ n+ℵ₀=ℵ₀ 。

乘法运算: ℵ₀ · ℵ₀=ℵ₀

证明:构建双射函数f:N² → N,

(m,n) (m+n+1)

f(m,n)=─────────+m。

2

详细证明参见:

推论:n · ℵ₀=ℵ₀

证明:

n ≥ 1 ⇒ ℵ₀ ≤ n · ℵ₀ ≤ ℵ₀ · ℵ₀=ℵ₀ ⇒ n · ℵ₀=ℵ₀ 。

幂运算: (ℵ₀)ⁿ=ℵ₀(乘法运算的推论)

连续统基数

(我们称实数集R 为连续统 Continuum)

定理

|R|=|P(N)|=|2ᴺ|。证明

1. 对 N 的子集构建 N → {0,1} 特征函数

0 n∈S

χₛ, ∀S ⊆ N χₛ(n)={ ,

1 n∉S

特征函数形成 P(N) 与 {0,1}ᴺ 的一一映射,因此 |P(N)|=|2ᴺ|。

2. 通过 Dedekind Cut 定义实数为有理数集的分割 r=(A,B) A,B∈Q,R 到 P(Q) 形成单射函数 ⇒ |R| ≤ |P(Q)|=|P(N)|=|2ᴺ|。(此处 Q 为可数集,与 N 等势,因此幂集基数相等)

3. 实数作为无限不循环小数可表示为仅包含 0,1 无限数列 (αₙ)∞ₙ₌₀ 形式,即 0.α₀α₁α₂α₃ . . . .(αᵢ=0 1) ,形成 2ᴺ 到 R 的单射映射 ⇒|2ᴺ| ≤ |R| .

综合2,3,根据

Cαntor — Bernstein — Schroeder Theorem(定理相关笔记详见下方) |2ᴺ|=|R|,综合1,2,3,|P(N)|=|2ᴺ|=|R| 。

运算性质

(a)

n+2ℵ⁰=ℵ₀+2ℵ⁰=2ℵ⁰+2ℵ⁰=2ℵ⁰(n∈N)

证明:

2ℵ⁰ ≤ n+2ℵ⁰ ≤ ℵ₀+2ℵ⁰ ≤ 2ℵ⁰+2ℵ⁰=2 · 2ℵ⁰=2ℵ⁰⁺¹=2ℵ⁰,根据Cαntor — Bernstein — Schroeder Theorem 得证。

(b)

n · 2ℵ⁰=ℵ₀ · 2ℵ⁰=2ℵ⁰ · 2ℵ⁰=2ℵ⁰ (n∈N,n>0)

证明:

2ℵ⁰ ≤ n · 2ℵ⁰ ≤ ℵ⁰ · 2ℵ⁰ ≤ 2ℵ⁰ · 2ℵ⁰=2ℵ⁰ · 2ℵ⁰=2ℵ⁰⁺2ℵ⁰=2ℵ⁰,根据Cαntor — Bernstein — Schroeder Theorem 得证。

*** 推论 |R × R|=|R|

(c)

(2ℵ⁰)ⁿ=(2ℵ⁰)ℵ⁰=nℵ⁰=ℵ₀ℵ⁰=2ℵ⁰(n∈N,n>0)

证明:

2ℵ⁰ ≤ (2ℵ⁰)ⁿ ≤ (2ℵ⁰)ℵ⁰=2ℵ⁰ ²=2ℵ⁰,2ℵ⁰ ≤ nℵ⁰ ≤ ℵ₀ℵ⁰ ≤ (2ℵ⁰)ℵ⁰=2ℵ⁰ ²=2ℵ⁰

*** 推论: n 维实数空间 Rⁿ 的所有点集基数为 2ℵ⁰ 。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

品质少女:情绪精灵 连载中
品质少女:情绪精灵
蕴笺甯
自创的魔法少女的故事(◍•ᴗ•◍)
2.8万字7个月前
水中月的镜中花 连载中
水中月的镜中花
尔年
除这个世界外,是否还有更多的平行世界?亦或着其他的世界线,过去,现在或者未来?这么做的目的是什么?为什么要这么做?宁子衿说,他好像是为了一个......
0.9万字5个月前
灵霄幻世之灵兔破冰缘 连载中
灵霄幻世之灵兔破冰缘
莫言霖
在充满奇幻色彩与无尽奥秘的灵霄大陆,星罗与天斗两大帝国分庭抗礼,各自闪耀着独特光芒。星罗帝国尚武之风盛行,皇室血脉觉醒的黑虎武魂仿若洪荒巨兽......
1.0万字4个月前
(重生)美人面 连载中
(重生)美人面
蠚里
原创双男主炮灰美人重生文甜宠主角绝美非快穿每个世界都是不一样的人各种类型供君挑选~
13.5万字3个月前
虚拟男友太气人 连载中
虚拟男友太气人
杨小八
为拒绝孤寡小青蛙,选择虚拟男友快速脱单,没想到这个男友会气人!甜甜的恋爱也太难了吧!
0.9万字3个月前
半心遗音 连载中
半心遗音
惬笺
主要讲述的是一个法器被众人抢夺的多元素小说,也有宫斗,剧情狗血,慎入
1.1万字2个月前