数学联邦政治世界观
超小超大

Steinhaus定理的证明

这篇短文的目的主要是回顾一下实分析中经典的Steinhaus定理,并介绍该定理的一个推广。最后我们将用这些结果来解决两个很有趣的问题。

首先我们来回顾一下Steinhaus定理的叙述:

Theorem I (Steinhaus). 若 A ⊂ ℝ 是一个勒贝格可测集,并且 μ(A)>0. 则集合 A – A={α – b:α,b ∈ A}中包含一个零点的开邻域.

证明:根据勒贝格密度定理(另一个比较简单的证明也会放在文末),对于任意 ε ∈(0,1), 存在 𝐼=(α,b) 使得 μ(A∩𝐼)>(1 – ε)μ(𝐼).假设定理的陈述是错误的,那么存在一个实数列 xₙ → 0 但是 xₙ ∉ A – A. 那么根据假设 xₙ+A ⊂ ℝ – A,否则 xₙ ∈ A – A. 现在取 n 充分大使得 |xₙ|<εμ(𝐼). 我们有

μ(𝐼∩(xₙ+A))=μ((𝐼 – xₙ)∩A)

≥μ(𝐼∩A) – μ((𝐼\)𝐼 – xₙ))∩A)

≥μ(𝐼∩A) – μ((𝐼\(𝐼 – xₙ).

注意这里我们用到了勒贝格测度μ 的单调性和平移不变性. 另外,注意到当 |xₙ| 充分小时我们有 μ(𝐼\(𝐼 – xₙ))=|xₙ|.

最后,由于A,Aᶜ=ℝ – A 是不交的,我们有

μ(𝐼)=μ((𝐼∩A))∪(𝐼∩Aᶜ))

≥μ(𝐼∩A)+μ(𝐼∩(xₙ+A))

>(1 – ε)μ(𝐼)+(1 – ε)μ(𝐼) – |xₙ|

>(2 – 3ε)μ(𝐼).

由于ε>0 是任意的,我们可以选择 ε 充分小,使得 2 – 3ε=3/2>1..那么我们得到 μ(𝐼)>3μ(𝐼)/2. 从而我们推出了矛盾. 这就完成了证明. ◾

下面我们来看Steinhaus定理的一个推广:

Theorem II. 假设 A ⊂ ℝ 勒贝格可测并且 μ(A)>0. 假设 fᵢ(x),i=1,2,. . .,n 是定义在0附近的一个开邻域上的函数,并且 fᵢ 在 x=0 处连续, fᵢ(0)=0,i=1,2,. . .,n. 那么集合H={h ∈ ℝ:∃x ∈ ℝ s.t.x+fᵢ(h) ∈ A,i=1,. . .,n} 包含0点的一个开邻域.

证明:根据勒贝格密度定理,存在区间 𝐼=(α,b) 使得 μ(A∩𝐼)>(1 – ε)μ(𝐼). 现在考虑集合

Aᵢ(h)=A – fᵢ(h), i=1,. . .,n.

并且我们取|h| 充分小,此时 fᵢ(h) → 0,所以

∩Aᵢ ≠ ∅.不难验证存在 t ∈ (α,b)

ᵢ₌₁

使得

t∈∩Aᵢ.这是因为

ᵢ₌₁

μ(A∩𝐼)>(1 – ε)μ(𝐼)>0,所以我们可以取到 t∈(α,b)于是

t+fᵢ(h) ∈ A, i=1,. . .,n.

但是这就说明h∈H. 这就说明存在 δ>0,并且 δ 只取决于区间 𝐼=(α,b),s.t. 当 |h|<δ时 h∈H. 这就完成了证明. ◾

下面我们来看两个有趣的应用,第一个应用是今年丘赛分析第三题的加强版:

Theorem III (丘赛2022分析第3题). 假设 A ⊂ ℝ 勒贝格可测并且 μ(A)>0. 证明 A 中包含任意长度 n ≥ 1 的等差数列.

证明:考虑函数 fᵢ(h)=ih,其中 i=0,1,. . .,n – 1. 根据Theorem II,集合

H={h ∈ ℝ:∃x ∈ ℝ,x+fᵢ(h) ∈ A,i=1,. . .,n}

包含0点的一个开邻域. 所以H 非空,于是存在一个长度为 n,公差为 h∈H 的等差数列. ◾

第二个结论学过实分析的同学应该比较熟悉,也就是我前几天在回答里提到的:

Theorem IV. 假设 A ⊂ ℝ 勒贝格可测并且 μ(A)>0. 那么 A 必然包含一个不可测的子集.

证明:我们先回顾一下Vitali集的定义和性质. 在 ℝ 上定义等价关系 x~y ⇔ x – y ∈ ℚ. 从 ℝ/~ 中每一个等价类选一个代表元,就组成了Vitali集 V . 定义 Vᵣ=r+V,r ∈ ℚ. 可以验证:

• 当 s ≠ t 时 Vₛ∩Vₜ=∅. 不然就存在 υ₁,υ₂ ∈ V,υ₁+s=υ₂+t. 所以 υ₁ – υ₂=t – s ∈ ℚ. 从而 υ₁ ~ υ₂ 这于定义矛盾.

• ℝ∪Vᵣ.

r∈ℚ

对于任意的 y∈ℝ,假设 y ∈ [x]. 设 z ∈ V 为 [x] 选出的代表元. 那么 y ~ x ~ z. 于是 s:=y – z ∈ ℚ.所以 y ∈ Vₛ ⊂ ∪ Vᵣ.

r∈ℚ

于是根据第二条我们有

A=A∩(∪Vᵣ)=∪A∩Vᵣ.

r∈ℚ r∈ℚ

我们证明存在形如A∩Vᵣ 的集合非空,并且这就是我们要找的不可测集. 存在这样的非空集是显然的. 如果所有这样的非空集都可测,那么

μ(A)=μ(∪A∩Vᵣ) ≤ ∑μ(A∩Vᵣ).

r∈ℚ r∈ℚ

现在设E=A∩Vᵣ,D=E – E. 显然 D 不包含0的任何开邻域,因为 D 中所有的元素都是无理数. 所以根据Steinhaus定理, μ(E)=μ(A∩Vᵣ)=0. 由于这等式对任意的非空 A∩Vᵣ 都成立,所以 μ(A)=0. 矛盾. ◾

最后我们给出文章最开始用到的引理的一个简单证明:

Lemma V. 假设 A ⊂ ℝ 勒贝格可测并且 μ(A)>0. 则对于任意 ε ∈ (0,1),存在区间 𝐼=(α,b) 使得 μ(A∩𝐼)>(1 – ε)μ(𝐼).

证明:假设定理陈述错误,那么存在 ε ∈ (0,1) 使得对于任意区间 𝐼 都有 μ(A∩𝐼) ≤ (1 – ε)μ(𝐼). 根据勒贝格测度的正则性,我们有 μ(A)=inf{μ(∪):A ⊂ ∪,∪ open}. 于是存在开集 ∪ ⊃ A 使得

ε 1

μ(∪)<μ(A)+───μ(A)=───μ(A).

1 – ε 1 – ε

我们知道ℝ 上的开集可以写成可数多个不交开区间的并: ∞

∪=∐ 𝐼ₙ. 于是我们有

ₙ₌₁

1 ∞ 1 ∞

μ(∪)<───∑μ(A∩𝐼ₙ) ≤ ───∑(1 – ε)μ(𝐼ₙ)

↑ 1 – ε ₙ₌₁ 1 – ε ₙ₌₁

=μ(∪).

但是我们得到了μ(∪)<μ(∪). 矛盾. 于是这就完成了证明. ◾

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

穿书后恶毒女配只想修仙 连载中
穿书后恶毒女配只想修仙
风亿星辰
顾染考研猝死穿书了,《瑶光修仙记》是一本集‘竹马打不过天降’‘仙门团宠’‘恶毒小师妹’为一体的披着修仙文皮的言情小说。而她自然不是穿成了女主......
35.2万字6个月前
快穿:娇软万人迷 连载中
快穿:娇软万人迷
江鱼不是鱼
全员单箭头,一见钟情梗,万人迷,脑子寄存—
4.5万字5个月前
金花图万事书 连载中
金花图万事书
镀金鸢尾
愿望不都是美好的坚定的感情不都是充满对肉身及财富地位的渴望的人不都是为满足自己的灵魂而活的——当然,这要看你怎么判断这几句话了,是犹带猜疑的......
1.3万字6个月前
下一位守门人 连载中
下一位守门人
阿翙_556556860
[养成系女主][异国他乡的探险之旅]一次巧合,我来到了一个奇怪的世界。这里似乎正在经历一次浩劫。这具身体的主人洛伊和他爷爷收养的哥哥阿野被他......
2.5万字3个月前
幽梦若影 连载中
幽梦若影
幽梦聆
恍恍惚惚,一世纠葛宛若大梦一场…………我是谁,我在哪,未来如何,过去如何……一剑穿心而过,往日师徒情深,呵……………前世今生,何其荒唐,值得......
4.7万字4周前
穿越之我成为了反派 连载中
穿越之我成为了反派
暖栀午后
我靠,怎么回事?我不是小团宠吗?怎么成了反派!成反派也就算了,为什么气运之子这么多?还好,系统出现,反派系统夏绫:宿主真正的反派,应该凶焰滔......
2.9万字5天前