数学联邦政治世界观
超小超大

【离散数学-集合论】等价关系及等价类

目录

前言 ▹

正文 ▹

参考 ▹

正文

等价关系

1.2.2等价关系(equiναΙence relαtion)

定义1.2.10 设A是一个非空集合,R是A上一个关系。如果R具有自反性,对称性,传递性,则称R是一个等价关系。通常,用“≅”表示等价关系。

例:整数的同余关系,几何图形的面积相等关系,人群中的同姓关系、同龄关系等。

考虑A是非空集合,若A上的关系R满足自反、对称、传递性,则称R是A上的一个等价关系。

等价类

定义1.2.11等价类(equivalence class)

❖设A是一个非空集合,R是A上的等价关系。A的一个非空子集M叫做A关于R的一个等价类,如果

1)若a∈M,b∈M,则a R b。

2)若a∈M,b∉M,则a ℟ b;或者,若a∈M,a R b,则b∈M。

❖通常,用[a]ʀ 表示包含元素a的等价类,则[a]ʀ={x|(x,a)∈R},a称为该等价类代表元。

用我自己的话来阐述一下:

设A是一个非空集合,R是A上的等价关系,我们称同时满足下列条件的A的非空子集M为等价类:

1. 若α ∈ M,b ∈ M,必有αRb。

2. 若α ∈ M,b ∉ M,必有α ℟b。或者说若α ∈ M,且αRb,则必有b ∈ M。

通常,用[α]ʀ表示包含元素α的等价类, 则[α]ʀ={x|(x,α) ∈ R},其中 a 称为该等价类代表元。

这个举同余关系就很好理解,考虑整数集Z,对模3同余,则可以将整数集划分为三个等价类

{x|x ∈ Z x ≡ 0 (mod 3)},{x|x ∈ Z x ≡ 1 (mod 3)},{x|x ∈ Z x ≡ 2 (mod 3)}。

定理1.2.6

❖设≅是集合A上的等价关系,于是等价类是存在的。

证明:(1)任取a∈A,令M={x|x∈A并且x≅a},显然,M非空。

(2)任取x₁ ∈ M,x₂ ∈ M,根据M的定义,则有x₁≅a,x₂≅a,而≅具有对称性,传递性,所以 x₁≅x₂。

X1=X2。

(3)任取x₁∈M,若x₁≅y,则x₁≅a,而≅具有对称性,传递性,所以y≅a,故y∈M。

因此,M是一个等价类。

这个定理说了2个东西

1. 由等价关系必然可以推导出等价类。

2. 根据等价关系构建等价类的方式:∀α ∈ A,M={x|x ∈ A,x ≅ α}其中a是等价类M的代表元。

定理1.2.7

❖设≅是集合A上的等价关系,M₁,M₂,. . .,是A中关于≅的所有等价类。于是

A=M₁∪M₂∪ . . .

并且Mᵢ∩Mᵢ=ф(i≠j),亦即,集合A上的等价关系把A分成了互不相交的等价类。

个人感觉这个定理并没有说清楚,因为它默认i ≠ j时,Mᵢ ≠ Mⱼ,然而这一点并没有在PPT上体现。

我用自己的话阐述一下:

1、设≅是集合A上的等价关系,由[公式]可以得到的A的所有等价类,任取其中两个等价类,它们要么相等,要么相交为空。

证明:

假设Ⅹ₁,Ⅹ₂是A上关于≅的两个等价类,则必然出现下面两种情况之一:

(1)、X₁,X₂;(2)、X₁ ≠ X₂ 。

我们将证明对于情况(2)而言,必有X₁∩Ⅹ₂=∅。

由于X₁ ≠ X₂ ,不失一般性,必然存在x ∈ X₁,x ∉ X₂(x ∈ X₂,x ∉ X₁是类似的)。

假若X₁∩X₂不为空,则必然存在y∈X₁∩Ⅹ₂,由等价类定义可得x≅y,但由于y∈X₂,则可知必然有x∈X₂,这就与x∉X₂形成矛盾,故而X₁∩X₂=∅。

2、取A上关于≅的所有两两相交为空的等价类,依次命名为M₁,M₂,. . .(也就是说Mᵢ∩Mⱼ=∅,i ≠ j),则必然有A=M₁∪M₂ . . .。

证明:

一方面,M₁∪M₂ · · · ⊆ A是显然的。

另一方面,任取x∈A,若x∉M₁∪M₂ . . . ,则可构建A上的一个等价类P={y|y∈A,y ≅ x},显然x∈P,但是由题目条件知M₁,M₂,. . .是A上关于≅的所有两两相交为空的等价类,故而必然有x∈M₁∪M₂ . . .,这与x∉M₁∪M₂ . . .形成了矛盾,因此必然有x∈M₁∪M₂ . . .。因此A ⊆ M₁ ∪ M₂ . . .。

综上,A=M₁∪M₂ . . .。

书上证明

证明:

❖任取Mᵢ,Mᵢ,i≠j。假设Mᵢ∩Mᵢ≠ф,则必存在x∈Mᵢ∩Mᵢ,则任取a∈Mᵢ,b∈Mᵢ,都有a≅x,b≅x,所以a≅b,故Mᵢ=Mᵢ,矛盾。

❖任取a∈A,令M={x|x∈A并且x≅a},由定理1.2.6知,M是等价类,故有k,使得M=Mₖ,因为a∈M,所以,

a∈M₁∪M₂∪. . .∪Mₖ∪. . . 。显然有M₁∪M₂∪ . . .⊆A 。故A=M₁∪M₂∪. . . 。

参考

离散数学集合论参考 吉林大学的网课 离散数学课程主页

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

听潮阁:一起去看星星吧 连载中
听潮阁:一起去看星星吧
NeKKo
更新不稳定/圈地自萌/请勿出站欢迎指点/拒绝指指点点北夜是01年最最最好的小孩2.5次元,请勿上升正主三次,可能会有时间线bug/混乱问题,......
17.8万字7个月前
文清散文 连载中
文清散文
—抺忧伤
散文形式
1.9万字6个月前
性格缺陷 连载中
性格缺陷
Le néant
【架空世界,双男主,1V1】男主喝了副作用最小的实验体,后期会很强。脑洞可能会有点奇怪,无厘头,男主不善良,有时候可能会有点小阴暗,甚至可能......
22.4万字6个月前
寻秘之秋 连载中
寻秘之秋
轻吟吟吟
流光溢彩的少年不疾不徐撞入她的眼眸,无数问题在她的心中生根发芽。“你好知秋,我是旬阳笙。”“这是我们第23次的重逢。”而她不知道的是,少年的......
0.2万字5个月前
繁花锦,百花杀 连载中
繁花锦,百花杀
天山北麓
(多个世界穿梭,多副本。不喜误入哦本文纯属虚构。)夜幕降临时,便是梦的开始。墙壁上摇摆不定的时钟,窗外呼啸而过的风。再次睁眼,你又会是谁呢?......
0.5万字3个月前
共赴山海谣 连载中
共赴山海谣
姜湖骗子
江白芷穿越了,穿越到修仙界一个七岁的乞丐孤儿,开局就是孤儿,这怎么搞啊?本来想苟活着,结果被凌霄宗大长老时长寻捡到,捡到成为宗门大师姐。本以......
1.0万字5天前