决定性公理
如果采用ZF+AD(决定性公理)系统,决定性公理可以每个实数子集都可测。
决定性公理的一致性相当于无穷个伍丁基数的一致性。
要想证明不可测集的存在性,必须依赖AC(选择公理)。
不可描述性
从不可达基数起这些基数全是通过对V绝对不可描述的扩展得到的,不过数学上的不可描述不是你们说的这些都无法成为X的描述,只有我独家可以。
而是这些描述不仅X有,Y也有。比如一个世界中各方面都很像现实世界可以说包含现实,但实际这些特征都不只是现实世界独有,一堆虚构世界都照样有,所以光靠包含这些描述并不能真正占有现实世界,现实世界就是不可描述的。
比如,如果ω就是大全,那么“对于一切n,都存在一个m使得n﹤m”是ω中的一个基本事实,但对于任何一个有限的世界,都存在一个极大数U,但对于U是不存在一个大于它的数。
所以“对于一切n,都存在一个m使得n﹤m”是一个只有ω才具有的描述而不被其下的小世界具有的,所以ω可以被这句话描述,反之,“存在一个极大数或最强者”是任何有限世界都具有的,无法特定描述包含某个有限世界。
所以对于那些大基数的大往往都是通过这种方式体现:假设大基数公理,我们推导出一个十分强大的性质p,但由于k的不可描述性,k之下也存在满足这个性质的a,并且往往会有很多,所以这个用来描述k非常大的性质其实还是不足以描述k之大。
不动点
凡事皆有原因,对任意x,均有一f(x),原因亦又其原因,对f(x)亦存在f(f(x)),并且,身为原因的一方优先于其结果,比如上帝是世界的原因优先于世界,记f(x)>x,而所谓的不动点,f(x)=x,则表明其是自身的原因。
数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。