数学联邦政治世界观
超小超大

(数学解释)文章

决定性公理

如果采用ZF+AD(决定性公理)系统,决定性公理可以每个实数子集都可测。

决定性公理的一致性相当于无穷个伍丁基数的一致性。

要想证明不可测集的存在性,必须依赖AC(选择公理)。

不可描述性

从不可达基数起这些基数全是通过对V绝对不可描述的扩展得到的,不过数学上的不可描述不是你们说的这些都无法成为X的描述,只有我独家可以。

而是这些描述不仅X有,Y也有。比如一个世界中各方面都很像现实世界可以说包含现实,但实际这些特征都不只是现实世界独有,一堆虚构世界都照样有,所以光靠包含这些描述并不能真正占有现实世界,现实世界就是不可描述的。

比如,如果ω就是大全,那么“对于一切n,都存在一个m使得n﹤m”是ω中的一个基本事实,但对于任何一个有限的世界,都存在一个极大数U,但对于U是不存在一个大于它的数。

所以“对于一切n,都存在一个m使得n﹤m”是一个只有ω才具有的描述而不被其下的小世界具有的,所以ω可以被这句话描述,反之,“存在一个极大数或最强者”是任何有限世界都具有的,无法特定描述包含某个有限世界。

所以对于那些大基数的大往往都是通过这种方式体现:假设大基数公理,我们推导出一个十分强大的性质p,但由于k的不可描述性,k之下也存在满足这个性质的a,并且往往会有很多,所以这个用来描述k非常大的性质其实还是不足以描述k之大。

不动点

凡事皆有原因,对任意x,均有一f(x),原因亦又其原因,对f(x)亦存在f(f(x)),并且,身为原因的一方优先于其结果,比如上帝是世界的原因优先于世界,记f(x)>x,而所谓的不动点,f(x)=x,则表明其是自身的原因。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

异世中原 连载中
异世中原
上官青鹤
异世界日记
0.2万字5个月前
梦之诡见 连载中
梦之诡见
牛毛
我叫夏昭,我猝死了,我以为我会直接死掉,如果我不是因为连续熬了七天夜干物流而猝死结果来到了另一个世界,我差点就信了。
1.7万字4个月前
星空下的守望者 连载中
星空下的守望者
橙子🍊🍊_754698565
科技的发展使人类成功走向宇宙,星际时代就此拉开帷幕。当人类的星际移民进行的如火如荼时,来自宇宙深处的神秘敌人却悄然降临……一个从边缘星球走出......
5.0万字3个月前
魔法之语 连载中
魔法之语
yes莫
千年前的玛吉拉大陆,是一片生灵涂炭的世界。精灵女孩柒月意外被老师伊西斯所救,从此开始她漫长的一生……
2.9万字3个月前
全世界都有我的暗恋者 连载中
全世界都有我的暗恋者
少年兰司
17.3万字2个月前
神界诸多事 连载中
神界诸多事
将军背诗
围绕神界的几位神明而展开的故事,也有其展开的平行世界的故事
3.9万字3周前