数学联邦政治世界观
超小超大

最大的“无和”集

我和朋友Shukun在去年年初一起写的文章The largest (k,l)-sum-free subsets[1]最近刚被接收,刚好借这个机会介绍一下这个结果。这篇文章中研究的问题最早可以追溯到1965年Erdos提出的一个重要的问题:任意一个包含 N 个整数的集合,它最大的无和子集能有多大?

我们先给出所谓的“无和”集(sum-free set)的定义:一个集合A 是sum-free的,如果对于 A 中任意三个元素 x,y,z ,我们都会有 。关于 sum-free set 的研究最早要追溯到对费马大定理的研究,以及哥德巴赫猜想,可以参见我之前写的blog:

假设A={1,2,. . .,N} 是前 N 个整数,那么 A 中最大的sum-free set有多大呢?可以很简单的证明,当取 A 中的全部奇数,或者取 A 的后一半区间时,我们会得到一个 A 的sum-free子集,并且这样选取的子集是最大的。也就是说,对于集合 {1,. . .,N} ,它的最大 sum-free 子集大小为 N/2 左右。但是对于一般的 N 元集合 A ,我们通常是取不到这么大的sum-free子集的。

那么,对于任意包含N 个元素的整数集合 A ,它包含的最大sum-free子集至少有多大呢?用精巧的概率方法,Erdos给出了一个下界: N/3 ,证明如下。

证:考虑一维环面 𝕋 ,我们可以将 𝕋 等距嵌入区间 [0,1] ,并且取 Ω=(1/3,2/3) 。对任意 x∈𝕋 ,定义 Aₓ={α ∈ A:αx ∈ Ω} ,显然 Aₓ 是sum-free集合。又由于

N

𝔼ₓ∈𝕋|Aₓ|=∫𝕋 ∑1Ω(xn)dx=──,

n∈A 3

根据抽屉原理,存在 x∈𝕋 使得 |Aₓ|>N/3 ,证毕。

Eberhard,Green,和Manners在2014年[2]通过应用arithmetic regularity lemma以及精巧的调和分析技术,构造了无穷多个 N 元集,其中选取超过 N/3+ο(N) 个元素,一定会产生一组sum。这篇文章解决了Erdos问题的上界:也就是说,目前我们得到的结果是,对任意 N 元集合,它包含的最大sum-free集合的大小至少是 N/3 ,至多是 N/3+ο(N) 。

接下来剩下的问题就是确定下界,因为[公式] 这个界看起来是取不到的。下面的猜想被很多人提出过,并且Tao和Vu认为它是加法组合领域最重要的猜想之一:

Conjecture

存在函数 ω(N) → ∞ 当 N → ∞ ,使得对任意包含 N 个正整数的集合,它包含的最大sum-free子集至少是 N/3+ω(N) 。

上面提到过,Erdos证明了下界至少是N/3 ,Alon和Kleitman证明了下界至少是 (N+1)/3 ,Bourgain证明了下界至少是 (N+2)/3 ,这个也是目前这个问题的最佳结果。

另一方面,我们定义更一般的(k,l)-sum-free set:一个集合A 是(k,l)-sum-free的,如果对任意 A 中的k+l个元素 x₁,. . .,xₖ,y₁,. . .,yₗ 我们都有

ₖ ₗ

∑ xᵢ ≠ ∑ yⱼ。

ᵢ₌ᵢ ⱼ₌₁

注意这里我们要求 k ≠ l 于是上文中的sum-free在新的定义下也就是(2,1)-sum-free。

关于(k,l)-sum-free问题的研究开始于Bourgain。他证明了上面关于(2,1)-sum-free(即sum-free)的猜想中的情形,对(3,1)-sum-free set 是成立的。另一方面,Eberhard证明了存在无穷多的N 元集合,其最大的(k,1)-sum-free子集至多是 N/(k+1)+ο(N) 。应用非标准分析的工具,我们的第一个结果证明了所有(k,l)-sum-free问题的上界:Theorem 1 (J.-Wu, 2021)

存在无穷多 N 元集,其任意

N

───+ο(N)

k+l

大小的子集一定包含一组(k,l)-sum。

另一方面,应用调和分析工具,我们证明了sum-free猜想对无穷多的(k,l)-sum是成立的。

Theorem 2 (J.-Wu, 2021)

存在无穷多组(k,l), 使得对任意包含 N 个正整数的集合,它的最大(k,l)-sum-free子集的大小至少是

N log N

───+────.

k+1 log log N

可惜的是我们证明的所谓无穷多组(k,l)并不包含我们最想要的(2,1),因此上文提到的(2,1)-sum-free的猜想还非常open。不过另一方面,我们的结果(以及目前的一篇后续结果[3])也许为这个猜想提供了一点“信心”:既然猜想对无穷多(k,l)都对,那就很有可能对所有(k,l)都对啦。。

这里我想主要说一下上界的构造(定理1)。这里我们的目的,是对每组 (k,l),以及无穷多个 N ,都存在一个 N 元集合 A ,使得对任意 ε ,A 中每个大小为

N

───+εN

k+l

的子集都包含一组 (k,l)-sum。

这里我们利用了乘法群的阿贝尔性质,或者更一般的,amenable group的性质。考虑(ℕ>⁰,·) 上的一族 Følner sequence:即一个无穷的有限子集序列 {Fₙ} ,满足对任意正整数 α ,

|Fₙ △ α · Fₙ|

lim ──────=0

|Fₙ|

直觉上来说,构造一个集合的 sum-free 子集严重依赖于对某个素数余数的分布:比如所有的奇数是sum-free的,所有被3除余1的数是sum-free的,所有被5除余2,3的数是sum-free的,等等。而对于Følner sequence来说,其恰好满足一个很好的整除性,即任意一个相对N 不是很大的数都是集合中大部分数的因子。从这个观点下,可以猜测也许Følner sequence就是我们想构造的集合 A 。接下来我们大概讲以下证明的思路。证明的主要工具来自非标准分析,我们先通过取超极限,把集合连续的映射到超实数中,然后通过分析集合的Loeb measure来推出矛盾。具体的证明细节可以阅读我们paper的第六节和第七节。

对于不了解 nonstandard analysis 的同学简单介绍一下。我们这里用到的是所谓的“cheap nonstandardanalysis”,也就是我们并没有本质的用到拓扑性质,换句话说,通过更精细的计算,实际上是可以避免使用 nonstandard analysis 的;这里主要是为了简化证明。在使用 ultraproduct 之后,我们可以将“有限”的object转化为“无限”的object,而无限object的组合性质通常要比有限的object容易一些。

对于一个自然数中的无穷集合A ,我们定义 A 的multiple upper density

ˉd(A)=lim sup lim sup ─↓

N → ∞ n →∞

|A∩(N!· [n])|

─────── ←

n

我们先证明了第一个定理:如果一个集合A 是 (k,l) -sum-free的,那么 ˉd(A) ≤ 1/(k+l) 。这个定理证明用到了Szemeredi定理,以及很多繁杂的初等技术,以及Łuczak-Schoen定理。这里略去不证,有兴趣的读者可以去看paper的第六节。我们这里主要介绍,如何用multiple upper density的信息来证明整个定理。

我们使用反证法 + 概率方法。假设{Fₙ} 为一组 Følner sequence,通过选取子列,我们可以假设对于每个 Fₙ ,我们都可以找到一个 (k,l) -sum-free子集 fₙ 的大小至少是 δ|Fₙ| ,其中 δ>1/(k+l) 。取 Fₙ 以及 fₙ 的超极限,分别为 F,f 。定义相应的 Loeb measure μ 。于是我们有 μ(f)>δ 。并且根据 Łoś 定理, f 在超整数上也是 (k,l) -sum-free的。注意到对超整数上的任意有限子集 X ,我们都有

μ(X) – μ(α · X)=lim ─↓

|X∩Fₙ| – |X∩α · Fₙ|

───────── ←

|Fₙ|

|Fₙ △ α · Fₙ|

≤ lim ──────=0

|Fₙ|

(以上也是唯一用到Følner性质的地方)。对于超整数上的每个非0元素x ,定义自然数子集 Aₓ ,满足 Aₓ={n:nx ∈ f} 。由于自然数是超实数的子集,并且 f 在超实数中满足 (k,l) -sum-free,于是 Aₓ 是 (k,l) -sum-free的。于是由Fatou引理,我们有

𝔼ˉd(Aₓ)=𝔼 lim sup lim sup ─↓

N → ∞ n → ∞

|Aₓ∩(N!· [n])

────── ←

n

|Aₓ∩(N!· [n])|

≥ lim inf lim inf 𝔼(───────)

N → ∞ n → ∞ n

1 ₙ

=lim inf lim inf ─ ∑ ℙ (jN!x ∈ f)

N → ∞ n → ∞ n ⱼ₌₁

1 ₙ

=lim inf lim inf ─ ∑ ℙ (x ∈ f)

N → ∞ n → ∞ n ⱼ₌₁

1

=μ(f) ≥ δ>──,

k+l

那么根据抽屉原理,存在一个x 使得 Aₓ 的multiple upper density 大于 1/(k+l) 。这个和上文中任意 (k,l) -sum-free集合 A 都满足multiple upper density至多为 1/(k+l) 矛盾。

注意:──线与箭头↓、←符号表示,连接的意思!

解释:因为正常划分会导致错乱与复杂的场景因此使用如上(箭头符号、──制表线符号)表示与描述(过程)!

参考

1. Y. Jing and S. Wu. The largest $(k,\ell)$-sum-free subsets. to appear at Trans. Amer. Math. Soc., 2021.

2. S. Eberhard, B. Green, and F. Manners. Sets of integers with no large sum-free subset. Annals of Math. 180, 621–652, 2014.

3. Y. Jing and S. Wu. A note on the largest sum-free sets of integers. arXiv:2011.09963, 2020.

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

皇帝的狐狸不好惹 连载中
皇帝的狐狸不好惹
嫣栀
一个是云狐山第一纨绔的狐仙云祁,平日里不是拔族长的胡子挖族长的酒,就是带着三只小狐狸去揍临山的妖兽顺带抢他们的灵果。一个是毫无权势被架空的废......
8.7万字2周前
血之海 连载中
血之海
笔墨sty
台风之爱恨,两界之种种事--水与火,可以相容
3.5万字2周前
今有包包在锅锅 连载中
今有包包在锅锅
苏晴舟
一个肉包子出生的一个女主幻化成人形来到人间寻找千年泪,是一个用尽一生爱你留下眼泪-
0.6万字1周前
all源:疯批实验体 连载中
all源:疯批实验体
鸢源儿
疯批病娇六人✘单纯张
3.7万字4天前
异世中原 连载中
异世中原
上官青鹤
异世界日记
0.2万字2天前
阿瑞亚大陆 连载中
阿瑞亚大陆
无名柳
(注:主角是短发的女性)人类世界以外的另一个空间,大陆的名字是直接引用了创世神的姓名。这片空间中诸多生灵相处和睦,无比美好。在那个扭曲微妙的......
22.1万字2天前