数学联邦政治世界观
超小超大

一般形式 Maschke 定理证明

Maschke 定理的一种证明,作为 有限群表示论(二)Maschke 定理 的补充

定理 设 G 为有限群,域 F 的特征 p 不整除 G 的阶数 |G| , V 是域 F 上的一个 G– 模;设 U 是 V 的一个 G– 真子模,则存在 G– 子模 W 使得 V=U ⨁ W 为 G– 模的直和

首先,对给定的G– 子模 U ,总是存在线性子空间的直和补,设为 Z ,则 V=U ⨁ Z 是线性空间的直和,我们希望对 Z 作一些适当的变换得到一个新的空间 W ,使得 W 是 V 的 G– 子模

对z ∈ Z 和 g ∈ G ,我们有唯一的分解

gz=z₁+z₂,

z₁ ∈ U,z₂ ∈ Z,

定义投影映射τg:Z → U 和 σg:Z → Z 为 τgz=z₁,σgz=z₂,由于 g 给出 V 上的线性变换,我们知道 τg,σg 也皆是线性的,且有关系式

gz=τgz+σgz,(M1)

对任一z∈Z ,有 z=1 · z=τ₁z+σ₁z ,而 τ₁ z ∈ U,于是 τ₁z=0 , σ₁z=z ;利用(M1) 式,对任意的 g,h ∈ G 和 z ∈ Z ,我们有 τhgz+σhgz=(hg)z=h(gz)

=h(τgz+σgz)

=hτgz+hσgz

=hτgz+τhσgz+σhσgz,(M2)

而 hτgz∈hU=U , τhσgz∈U , σhσgz∈Z ,所以比较等式 (M2) 两边可得 τhgz=hτgz+τhσgz,(M3)

σhgz=σhσgz,(M4)

前面我们得出 σ₁:Z → Z 是 Z 上的恒等,代入 (M4) 式即有,对任一 z∈Z , z=σ₁z=σgg⁻¹ z=σgσg⁻¹ z,

z=σ₁z=σg⁻¹ gz=σg⁻¹ σgz,(M4.1)

由此推出 σg⁻¹=σg⁻¹ ;

于是对任意的g,h ∈ G 和 z∈Z ,有

(σhg)⁻¹(σh z)=σ(hg)⁻¹ (σhz)=σg⁻¹h⁻¹(σhz)

=σg⁻¹σh⁻¹σhz

=σg⁻¹ z∈Z.(M4.2)

在 (M3) 式中以 σg⁻¹ ᶻ 替换 z 得到

τhg(σ⁻¹hg σhz)=τhg(σg⁻¹z)=hτgσg⁻¹ z+τh z∈U,(M4.3)

将 (M4.3) 式对所有的 g∈G 求和可得

∑ τhg(σ⁻¹hg σhz)=h∑ τgσ⁻¹g z+|G|τhz,

g∈G

结合 (M4.1) 知

∑ τhg(σ₍hg₎⁻¹ σhz)=h∑ τgσg⁻¹ z+|G|τhz,

g∈G g∈G (M5)

现在定义映射 η:Z → U 为

1

ηz:=── ∑τg(σg⁻¹z) ∈ U,

|G| g∈G

则 η 是线性的;注意这里必须有 p 不整除 |G| 才能作除法

对固定的h∈G ,当 g∈G 跑遍 G 中元素时, hg 也跑遍 G 中元素,所以 (M5) 式等价于

η(σhz)=h(ηz)+τhz.(M6)

置W:={z+ηz|z∈Z} ,我们断言, W 即为所求的 G– 子模

首先W 是线性映射 z↦z+ηz 的像集,故必为 V 的线性子空间;

对任一ω∈W ,设 ω=zω+ηzω,zω ∈ Z ,则对任一 h∈G ,由 (M6) 可得

hω=h(zω+ηzω)=hzω+h(ηzω)

=τh zω+σh zω+(ησhzω – τh zω)

=σh zω+ησh zω ∈ W,

因此 W 为 G– 子模;

对任一υ∈V=U ⨁ Z ,存在唯一的 uυ ∈ U 和 zυ ∈ Z 使得 υ=uυ+zυ ,于是 υ=uυ+zυ=(uυ – ηzυ)+(ηzυ+zυ),

而 uυ – ηzυ∈U,ηzυ+zυ∈W ,故 V=U+W;

最后取u=z+ηz ∈ U ∩ W ,其中 z ∈ Z ,则由 ηz ∈ U 知 z=u – ηz ∈ U ,故 z∈U∩Z={0} ,这就推出 u=0 ,即 U∩W={0} ;

综上,我们证明了V=U ⨁ W 是 G– 子模的直和

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

(科幻万人迷)渣女改造系统 连载中
(科幻万人迷)渣女改造系统
吃人不放盐23
—这是一个社会潜在型人渣,被一个莫名奇妙的系统培养成社会栋梁最后成神的故事—林一览一直都知道自己不是个好东西,但从来没有想过,自己会因为渣得......
1.7万字5个月前
八点之后 连载中
八点之后
猹狸猫
古铜巷里的三兄妹,看似商人,实则在治愈着伤心人,每到晚上八点之后,一行人便踏上了夜行之路,每每一件物品物归原主,一件奇异事件便在悄然发生。(......
1.9万字5个月前
天道?呵,本神女可是创世神! 连载中
天道?呵,本神女可是创世神!
江边月皎皎
啧啧啧,似乎在这个平台修仙文没什么流量啊。...洛璃月自出生以来,就位居高位,受尽宠爱。可就在某一天,她娘亲爹地全都莫名失踪,而她被人掳走。......
0.4万字5个月前
凡人修仙恋 连载中
凡人修仙恋
夜风花
这个是第一次写,写不好大家可以不看,
0.2万字2个月前
觉醒后我和女鬼杀疯了 连载中
觉醒后我和女鬼杀疯了
片儿鱼
言清欢and言宜愉『实力爆表大佬鬼and智勇双全大美人』双女主,文笔差————————言宜愉是个初中生她原以为三年就这么过去了直到…学校操场......
1.5万字2周前
慕容归零 连载中
慕容归零
丽夏
慕容前世嫁给了蔡飞,蔡飞家暴直到而死都不明白是,原来蔡飞和慕楠早就勾搭在一起了。原来墨卿才是真正的爱我的,把她抱在怀里哭。蔡飞和慕楠你把墨卿......
6.6万字4天前