数学联邦政治世界观
超小超大

Hilbert基定理与代数集

本文介绍Hilbert基定理,并给出它的一个几何背景

为介绍从几何的角度来看这个定理,我们先定义代数集

本文中我们设k 为代数闭域

Def 1

kⁿ 的代数集 V(S) 为 k[X₁,. . .,Xₙ] 的子集 S 的零点集

V(S)={(α₁,. . .,αₙ)∈kⁿ|f(α₁,. . .,αₙ)=0,∀f∈S}

此处我们没有约定S 有限,事实上,我们可以证明任意代数集都可视为有限个多项式的零点集,这就是Hilbert基定理

Thm 2

环k[X₁,. . .,Xₙ] 是notherian的

我们证明下面的引理

Lem 3

若A notherian,则 A[X] 亦然

pf

我们通过证明A[X] 的每个理想都是有限生成的来说明其是notherian的

设α 为 A[X] 的真子理想,记 α(i) 为所有出现在 i 次多项式的首项系数中的 A 的元素

容易验证,α(i) 为理想,且 α(i) ⊂ α(i+1)

任取含于α 的一个 A[X] 的理想 b ,显然 b(i) ⊂ α(i),∀i

我们先证若上式中对任意的 i 均有等号,则 b=α

任取f∈α

由于b(deg f)=α(deg f) ,则存在 g∈b 使得 deg(f – g)<deg f

于是f=g+f₁ ,且 deg f₁<deg f

同理f₁=g₁+f₂ ,且 deg f₂<deg f₁

于是存在m∈ℤ≥₀ 使得

f=g+g₁+. . .+gₘ ∈ b

下面我们构造一个有限生成的b 满足 b(i)=α(i) ,∀i

注意到α(1) ⊂ α(2) ⊂ . . .

由于A notherian,则存在 d∈ℤ≥₀ 使得 α(d)=α(d+1)=. . .

对任意i ≤ d , α(i) 有一个有限生成集,记为 {αᵢ₁,. . .,αᵢₙᵢ}

对一组(i,j) ,存在 fᵢⱼ ∈ α 使得其首项系数为 αᵢⱼ

取b 为生成集是 {fᵢⱼ} ,其中 1 ≤ i ≤ d , 1 ≤ j ≤ nᵢ

此时b(i)=α(i),∀i

于是我们有α=b 为有限生成的

由Lem 3,显然得到Thm 2

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

梦断南宫 连载中
梦断南宫
梦境之旅_
生命只有一次,又或许平行世界有无数次。一诺的妈妈会在另个世界依旧陪伴一诺吗?
13.4万字2周前
我在泰娱哦! 连载中
我在泰娱哦!
Dy蒂伍艾
近年来,我迷上了泰娱,所以有这样的幻想也不为过。
39.4万字2周前
团宠:有五个不熟悉的哥哥怎么办? 连载中
团宠:有五个不熟悉的哥哥怎么办?
悦雪风吟
作为一个身体不好的小孩子,爸妈为了让她养好身体,带她回到了山上的奶奶家,与奶奶父母一起生活,彼时大哥已经完全有能力接管公司,父母便安心照顾她......
1.2万字2周前
极狱——重生之光 连载中
极狱——重生之光
桉姸
剧情跟随故事发展而来
0.7万字1周前
梦的结局I 连载中
梦的结局I
紫苜花
“我以天下为棋,赌我胜它半子。”“你说,我们还有见面的机会吗?”“我好想你,我错了……”“师尊你何时归来。”“主上,你不在的日子,总归是无趣......
1.9万字1周前
锦年金缘 连载中
锦年金缘
浅和苏
很多年后,众人才知道,那年他们的遇见,早已注定……
0.6万字2天前