数学联邦政治世界观
超小超大

delta系统引理的一个证明

Δ系统引理(AC):令 H 是不可数个有限集构成的集族,那么存在 ↅ ⊆ H 满足 |ↅ| ≥ ω₁ 且 ↅ 同根,同根是指 ∃r∀x,y ∈ ↅ(x ≠ y → x∩y=r) 。

由于AC等价于良序定理,因此∪H 可以被良序化,固定 H 上的良序 R ,下面我们证明引理:

不妨假设(∪H,R) ,这样可以直接令 {pα:α<ω₁}=H ⊆ [ω₁]<ω。如果 {min pα:α<ω₁} 在 ω₁ 中无界,那么由 ω₁ 的正则性,我们从 H 中挑选出不可数子集 ↅ={p'α:α<ω₁} ,其中 α<β<ω₁ → max p'α<min p'ᵦ ,这就有 ∀x,y ∈ ↅ(x ≠ y → x∩y=∅) ;如果 {min pα:α<ω₁} 在 ω₁ 中有界,令 {min pα:α<ω₁} ≤ β,由 ω₁ 的正则性,存在 γ ≤ β 使得 {pα:min pα=γ} 的基数是 ω₁ ,令 γ₀ 是满足上述条件的最小 γ 且 ↅ₀={pα ∈ H:min pα=γ₀} 。

现在我们考察ↅ₀ 。令 secmin(pα) 是 pα 中倒数第二小的元素,如果不存在倒数第二小的元素就令 secmin(pα)=∅ 。这时分成两种情况:第一种情况是 {secmin(pα):pα ∈ ↅ₀} 在 ω₁ 中无界,那么可从 ↅ₀ 中挑选出不可数子集 ↅ₁={p'α:α<ω₁} ,其中 α<β<ω₁ → max p'α<secmin(p'ᵦ) ,这就有 ∀x,y ∈ ↅ₁{x ≠ y → x∩y={γ₀}} ;第二种情况是 {secmin(pα):pα ∈ ↅ₀} 在 ω₁ 中有界,那么存在 γ 使得 {pα ∈ ↅ₀:secmin(pα)=γ} 的基数是 ω₁ ,令 γ₁ 是满足上述条件的最小 γ 且 ↅ₁={pα ∈ ↅ₀:secmin(pα)=γ₁} 。

重复进行上述过程,由于H 中元素都是有穷集,因此必然存在自然数 n 使得 Hₙ={p ∈ H:|p|=n} 不可数,不妨令 H=Hₙ ,则上述过程必在有穷步内结束,结束后就得到了所求的 ↅ 和根 r ,引理成立 ⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

来自遥远云境国度的星月神话 连载中
来自遥远云境国度的星月神话
糖裕
遵守世界法的萝甜甜掌管星星法则,一直爱护着可爱的子民。从西界到东海的旅途由此展开。与一群可爱的同胞,拥有友谊,发现爱情,守护亲情。
0.5万字8个月前
千秋引岚霜录 连载中
千秋引岚霜录
梦茳行
我的信仰因你而生,所以在我的世界当中,你则是我的神明。————————我不在乎你在别人眼中是谁,我只在乎你是我一人的阿岚,唯一的阿岚
0.6万字7个月前
玄界:往事寻意 连载中
玄界:往事寻意
路过的魈厨
双男主安米瑞斯×宴江副cp枫喻川×周暮云克罗维亚斯×苏长青殷十九×穆灵
1.7万字6个月前
不相离,不相弃 连载中
不相离,不相弃
栢竹
稚子被预言为灾星降世即便是肆意的妖,也被预言束缚不得归家她一直很疑惑为什么自己的友人眼底总是带着苦涩直到那日她踏上了家乡的土地一切也都水落石......
0.6万字5个月前
穿六零后:反派女配拒绝当炮灰 连载中
穿六零后:反派女配拒绝当炮灰
奈斯木拉
[首发于话本小说]谢邀,人在六零农村,你问我怎么花式表演种好一块土地?答:“不知道啊,老师没教。”具体版简介:人倒霉怎么可以倒霉成这样,刚临......
15.0万字4周前
复活后给自己开个挂 连载中
复活后给自己开个挂
兔懒
一朝复苏,我看见我的副人格用着我的身体,为我报仇爱上他是宿命也是注定我深知只有他不会背叛我只有他才值得我付出所有我们绝对契合毫无秘密绝不背叛......
0.4万字1周前