数学联邦政治世界观
超小超大

Schroder-Bernsteri(S-B)定理

S – B Schroder – Bernstein 定理大概是说:若有单射f:A → B和单射g:B → A,我们可以构造出双射h:A → B,具体的想法是,既然每个单射在自己的定义域和值域上都是双射,我们可以把A分成不交的两部分,一部分用f映过去,记为E,将A – E用g⁻¹映过去,这样就得到了双射h,为了得到这样的E,我们首先观察到A – E=g(B – f(E)),即 E=A – g(B – f(E)),则问题等价于寻找映射

H:ℙ(A) → ℙ(A),X ↦ A – g(B – f(X))的不动点,对于形如H:ℙ(A) → ℙ(A),的映射,我们怎样找到它的不动点呢?事实上我们有如下定理:

定理1.0:对于形如P:ℙ(A) → ℙ(A)的映射,如果它满足:若X ⊂ Y则P(X) ⊂ P(Y),那么它有不动点。

证明:我们取所有Ⅹ ⊂ P(X)的元素X组成的集合,记为S,容易证明∪S是S的⊂ – 上确界,记为α对任意s ∈ S,我们有s ⊂ P(s) ⊂ P(α),故P(α)是S的一上界,我们有α ⊂ P(α),于是P(α) ⊂ P(P(α)),我们有P(α) ∈ S,因此P(α) ⊂ α\易知映射[公式]满足定理条件,存在不动点,这就证明了S-B定理。 通过类似的论证我们可以证明一个更一般的定理:

定理1.1(Banach映射分解):若有映射f:A → B和映射g:B → A,

─ ─

则存在分解A=X∪X,B=Y∪Y,使得

─ ─ ─

f(X)=Y,g(Y)=X,且X∩X=∅,

Y∩Y=∅ 证明思路同样是寻找h:X ↦ A – g(B – f(X))的不动点

以下将 Schroder-Bernsteri 定理简记作S-B 定理,此定理对集合基数的比较及证明集合之间的等势起很大的作用.

【例5.6】设 A,B,C 为三个集合,若A⊆B⊆C,且 A≈C,证明 A≈B≈C.

证明 由于 A⊆B⊆C 且 A≈C,由定理5.7的推论可知,A ≤ • B且B ≤ • A,由S-B定理可知A≈B,又由定理5.3可知,A≈B≈C.

定理 5.13 R≈(N→2),其中 N→2=2ᴺ.

证明 由 S-B 定理,只需证明 R ≤ • (N→2) 且(N→2)≤ • R.

(1)先证R ≤ • (N→2),又只需证明(0.1) ≤ • (N→2).为此构造函数 H;(0.1)→(N→2).对于∀z∈(0.1). z 表示二进制无限小数(注意表示法的惟一性),H(z):N→〈0.1〉.且∀n∈N,取 H(z)(n)为z的第(n+1)位小数.

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

八点之后 连载中
八点之后
猹狸猫
古铜巷里的三兄妹,看似商人,实则在治愈着伤心人,每到晚上八点之后,一行人便踏上了夜行之路,每每一件物品物归原主,一件奇异事件便在悄然发生。(......
1.9万字8个月前
零星诗月 连载中
零星诗月
鱼泷泷
一些磕CP的产文…单纯想写些自己喜欢的CP,不定期更新。(属性比较乱哈,有双女主,双男主,女攻男受,男攻女受,或者人兽恋……等等,有冒犯到的......
1.3万字8个月前
眼悦 连载中
眼悦
御情@倾厄
这场一见钟情的梦很美!也很喜欢。梦里不知身是客,不知这场梦何时醒?更担心的是:不知能否接受醒来时的落空!如果可以对梦许愿,希望一直做下去,到......
25.1万字5个月前
胡说,她才不是坏女人 连载中
胡说,她才不是坏女人
杜光连
江思雨从混沌中醒来就没有了记忆,是333带她来到了小世界中。系统333说只要让他的主人拥有了情欲,那江思雨就会恢复记忆,离开混沌,找回自由,......
7.2万字4个月前
山茶花的思念 连载中
山茶花的思念
在上不是南北~
0.7万字3个月前
快穿之她是心尖痣 连载中
快穿之她是心尖痣
许青山
我有一卷很长的故事,讲的全是痴憎怨,爱别离……世界一:女扮男装的女相成了朝堂万人迷
7.4万字2个月前