数学联邦政治世界观
超小超大

Kronecker定理

设ωᵢ ∈ ℂ (1 ≤ i ≤ n)为单位根, ξ=∑ωᵢ 。若 |ξ|=1,则 ξ 也是单位根。

让我一下子想起来代数数论上的习题:

ξ为一代数整数, ξ为单位根的充要条件是其所有共轭元素模为1。

充分性显然,证明必要性,设ξ 的极小多项式 f(x)=xⁿ+α₁xⁿ⁻¹+· · ·+αₙ ∈ ℤ[x],在 ℂ 上全部根是 ξ₁=ξ,ξ₂,· · ·,ξₙ

至少关于ξᵢ 的初等对称多项式应该都是整数,那利用牛顿公式它们的 k 次幂和也总是整数。

sₖ=∑ ξᵏᵢ ∈ ℤ,sₖ₊ₙ+α₁sₖ₊ₙ₋₁↓

ᵢ₌₁

+· · ·+αₙsₖ=0 ←

接下来注意到{sₖ} 是n阶线性递推,且 |sₖ| ≤ n ,然后就是典中典的一个结论,这样的递推一定是循环的。一般来说可以用抽屉原理去做,我偏不。

给定有限集合S , g:S → S 为单射,那么显然 g 等同于 S 上的一个置换。 Aut(S) 为有限群,那么一定存在 n 使得 gⁿ=idₛ 。一般的,如果 S 是无限集,但 x ∈ S 在 g 作用下生成的轨道 Oₓ 有限,那存在 n 使得gⁿ|ᴏₓ=idᴏₓ

这里取S=ℤⁿ,g(p₁,p₂,· · ·,pₙ)=(p₂,· · ·,pₙ,–α₁pₙ – · · · –αₙp₁) ( g 单,因为 αₙ ≠ 0 )

(s₀,s₁,· · ·,sₙ₋₁) 所在轨道是有限集合,故而存在T, gᵀ(s₀,s₁,· · ·,sₙ₋₁)=(s₀,s₁,· · ·,sₙ₋₁)=(sᴛ,sᴛ+1,· · ·,sᴛ₊ₙ₋₁)

∑ ξᵀᵢ=sᴛ=s₀=n ⇒ ξᵀᵢ=1

ᵢ₌₁

不难发现其实把所有共轭元素模长为1,换成不大于1也是对的。(我看到有人说这个加强的结论属于Kronecker,虽然我查不到,但也这样吧)

(Kronecker)ξ 为一非0代数整数, ξ 为单位根的充要条件是其所有共轭元素模不大于1。

那么有没有一个代数整数自己模长是1,但共轭元素模长不是1的呢?确实是有的,甚至有一类很特殊的数称为Salem数,这类数代数次数为2d,其中2d-2个共轭模长是1,但其它两个一个模长是大于1,一个模长小于1,且要互为倒数。

一个例子:

1 1

x²((x+─)²+2(x+─) – 2)=0

x x

1 1+√3

x+─=–1 ± √3 ⇒ x=─── ↓

x 2

√2√3 1 – √3 √2√3

± ─── or – ─── ± ─── i

2 2 2

回到北大夏令营那个题目的证明

设ωᵢ ∈ ℂ (1 ≤ i ≤ n)为单位根, ξ=∑ωᵢ 。若 |ξ|=1,则 ξ 也是单位根。

不妨找一个足够大的m 使得 ωᵐᵢ=1,记一个m次本原单位根是 ζ ,

ₙ₋₁

ξ=∑ αᵢξⁱ(αᵢ ∈ ℕ)

ᵢ₌₀

ₙ₋₁ ₙ₋₁

1=ξˉξ=∑ αᵢξⁱ ∑ αᵢζⁿ⁻¹,

ᵢ₌₀ ᵢ₌₀

整理出一个关于 ζ 的整系数多项式,那所有的m次本原单位根也应当适合于这个方程,其实就表明 ξ 表达式里的ζ 换成任意一个本原单位根,模长还是1。

Gαl(ℚ(ζ)|ℚ)=(ℤ/mℤ)* 在m次本原单位根上的作用其实就是m次本原单位根间的置换,这表明 ξ 在Galois群作用下保持模长1,注意到 ξ 的Galois闭包包含在 ℚ(ζ) 中,应用Kronecker定理得到结果。

设ωᵢ ∈ ℂ (1 ≤ i ≤ n) 为单位根,

1

ξ=─ ∑ ωᵢ

n

是代数整数。那么只能 ξ=0 或者 ξ=ωᵢ ∀1 ≤ i ≤ n

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

疯批实验体 连载中
疯批实验体
鸢源儿
疯批病娇六人✘单纯张
3.3万字5个月前
暶夜 连载中
暶夜
槑槑乐
我从深渊里来为了生存为了自由为了更迭
6.3万字4个月前
西幻:大小姐的抽卡生涯 连载中
西幻:大小姐的抽卡生涯
渣渣羽
【无cp】+【西幻】+【抽卡系统】+【穿越】+【少女漫】+【微无敌流】池念穿越了,穿进了一本名叫《灰姑娘的复仇生涯》的打着大女主标签的玛丽苏......
1.0万字2个月前
道藏玄止 连载中
道藏玄止
云舟隐鹤
腹黑疯批事业派女主披荆斩棘,干翻倒霉亲戚,打趴狐狸窝长老会,与魔王男主相爱相杀的故事。【注意】本文群像风,除男女主外有多对cp,各种都有,但......
71.7万字1个月前
时空碎片(上) 连载中
时空碎片(上)
Y.榆欢
0.6万字1个月前
怪异的小妹 连载中
怪异的小妹
小鹿童
林家有三子,两男一女。大哥名林萧,二哥为林子洲,三妹唤作林墨。那林墨满月之时,宴席上邀请了各大世家共同庆祝,却突发异状,她小脸泛红,哭声不止......
2.3万字3天前