数学联邦政治世界观
超小超大

复数

复数域 ℂ 是唯一一个代数封闭的局部域。

(一维)局部域(loacl field)按特征和Archimedes性可以分为三类:

• 特征为 0 的Archimedes局部域:实数域 ℝ 、复数域 ℂ

• 特征为 0 的非Archimedes局部域: p-adic数域 ℚₚ 的有限扩张

• 特征非零的非Archimedes局部域:有限域 𝔽q 上的形式Laurent级数域 𝔽q((T))

显然其中代数封闭的只有复数域ℂ 。因此,只从代数和拓扑上讲,复数域具有三个非常好的性质:代数封闭、度量完备、局部紧致。

复数域的代数封闭性自然不必多说,这意味着每个次数不小于一的多项式都至少有一个零点。度量完备性意味着其内的每个Cauchy序列都收敛,这为分析学的开展奠定了基础。而局部紧致性作为拓扑空间的有限性条件,研究的是拓扑空间的局部性质和整体性质的联系。例如,对于非紧致的Hausdorff局部紧致空间,可以单点紧致化,复数域ℂ 的单点紧致化就是Riemann球面 ˆℂ ,同时也是复射影直线 ℂℙ¹ ,这是复分析和复几何中的重要研究对象。

更重要的一点,代数封闭性以及度量完备性共同暗示了:在某种意义上讲,复数域已经是“最大”的数域——因为你没办法再通过代数方法和拓扑方法进一步扩张。然而,度量完备的代数闭域不仅仅有复数域ℂ ,还有 p-adic复数域 ℂₚ 、 ℂₚ 的球完备化 Ωₚ 和tilting ℂᵇₚ 。但更妙的一点在于, ℂₚ 和 Ωₚ 并不比 ℂ 更“大”,事实上,根据Steinitz定理,这三个作为域是同构的,但是 ℂₚ 和 Ωₚ 在拓扑性质上并不如 ℂ ,这两者都不是局部紧致的,同样 ℂᵇₚ 也不是,而且 ℂᵇₚ 的特征是 p ,非零。

从泛函分析角度看,ℂ 甚至还是一个球完备域,这点是 ℂₚ 完全比不了的。而几何上,我们有复几何与复代数几何的对偶——GAGA,这些都是复数域独有的。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

厄瑞波斯与光 连载中
厄瑞波斯与光
橋奈洋子
2.4万字6个月前
穷途(骗局3……0) 连载中
穷途(骗局3……0)
糊糊小白
欢迎各位来到“穷途”游戏,13位玩家齐聚一堂,遵循山羊的指引,携手闯关,只为取得塔顶的奖励,胜利者只有一位,谁会是最终赢家?注意:请不要相信......
7.4万字5个月前
缘(无限) 连载中
缘(无限)
旧街灯
1.1万字3个月前
公主殿下何故谋反 连载中
公主殿下何故谋反
墨月海
*西幻,但是广西幻想无尽的创造与探索,不屈的抗争与牺牲,这是属于柔弱的物种——人类本身的荣光。这大概是一个脑洞很大的故事,关于成长、成败、理......
43.9万字2个月前
天定世间生机 连载中
天定世间生机
八面玲珑的冷漠美人
利益。自保。残忍。劫富济贫。要利益,要自保,要大义,要善心。王者般的存在,是没落还是向心所至。已签约/连载中/原创禁止转载❗❗❗
3.6万字2个月前
梦如所愿 连载中
梦如所愿
罹翙
梦……真的能所愿成真吗?
0.7万字6天前