数学联邦政治世界观
超小超大

复数

复数域 ℂ 是唯一一个代数封闭的局部域。

(一维)局部域(loacl field)按特征和Archimedes性可以分为三类:

• 特征为 0 的Archimedes局部域:实数域 ℝ 、复数域 ℂ

• 特征为 0 的非Archimedes局部域: p-adic数域 ℚₚ 的有限扩张

• 特征非零的非Archimedes局部域:有限域 𝔽q 上的形式Laurent级数域 𝔽q((T))

显然其中代数封闭的只有复数域ℂ 。因此,只从代数和拓扑上讲,复数域具有三个非常好的性质:代数封闭、度量完备、局部紧致。

复数域的代数封闭性自然不必多说,这意味着每个次数不小于一的多项式都至少有一个零点。度量完备性意味着其内的每个Cauchy序列都收敛,这为分析学的开展奠定了基础。而局部紧致性作为拓扑空间的有限性条件,研究的是拓扑空间的局部性质和整体性质的联系。例如,对于非紧致的Hausdorff局部紧致空间,可以单点紧致化,复数域ℂ 的单点紧致化就是Riemann球面 ˆℂ ,同时也是复射影直线 ℂℙ¹ ,这是复分析和复几何中的重要研究对象。

更重要的一点,代数封闭性以及度量完备性共同暗示了:在某种意义上讲,复数域已经是“最大”的数域——因为你没办法再通过代数方法和拓扑方法进一步扩张。然而,度量完备的代数闭域不仅仅有复数域ℂ ,还有 p-adic复数域 ℂₚ 、 ℂₚ 的球完备化 Ωₚ 和tilting ℂᵇₚ 。但更妙的一点在于, ℂₚ 和 Ωₚ 并不比 ℂ 更“大”,事实上,根据Steinitz定理,这三个作为域是同构的,但是 ℂₚ 和 Ωₚ 在拓扑性质上并不如 ℂ ,这两者都不是局部紧致的,同样 ℂᵇₚ 也不是,而且 ℂᵇₚ 的特征是 p ,非零。

从泛函分析角度看,ℂ 甚至还是一个球完备域,这点是 ℂₚ 完全比不了的。而几何上,我们有复几何与复代数几何的对偶——GAGA,这些都是复数域独有的。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

快穿之芙蓉帐暖 连载中
快穿之芙蓉帐暖
玉樱樱
(快穿+系统+虐渣+爽文+演戏+大美人+渣女+男主碎片)渣女梨依儿快穿到各个小世界围绕在各个大佬周围。完成任务后就不甩他们了,主搞自己的事业......
3.2万字6个月前
蚊子 连载中
蚊子
巟无
oc一号世界观而已
0.5万字5个月前
天天暴富APP 连载中
天天暴富APP
奈斯木拉
(已签约+万华镜文社)暴富第一天,到账500万。暴富第二天,到账魔方手表一枚。暴富第三天,到账海城别墅一套。暴富第四天,到账无限额卡一张。…......
39.2万字5个月前
路西法今天堕天了吗? 连载中
路西法今天堕天了吗?
加木男
上帝不容亵渎,拥护他的前行。
3.4万字4个月前
all恶 连载中
all恶
丁猫奇遇记
请自行观看全员恶人,作者更新有点慢
0.9万字3个月前
回溯逆转 连载中
回溯逆转
枫苑音
如果让时间重置,你们能改变未来吗?我期待你们造成的改变。但同时可以承受代价的人离开了就要有无数普通人来承受这个代价[]会同意吗?
0.7万字2个月前