数学联邦政治世界观
超小超大

罗素悖论

本文介绍罗素悖论。

朴素集合论大约是这样考虑集合是否存在的:如果你能描述元素的性质,那么存在一个集合,它包含所有符合该性质的元素。这也是为什么在朴素集合论中我们会这样表示一个集合:{x:φ} ,其中 φ 是元素的性质。这就引发了著名的罗素悖论。

罗素悖论

考虑这样一个集合:R={x:x ∉ x} ,它是所有不属于自身的元素的集合。既然我们能够描述集合中元素的性质,那么这个集合就应该存在,但真的是这样吗?

假设该集合存在,我们不禁想问这样一个问题:R是否属于它自己?如果R∈R 那么 R 需要满足集合 R 中元素的性质: x∉x ,也就是说 R∉R ;如果 R∉R ,显然 R 符合我们所描述的性质: x∉x ,那么 R∈R 。于是: R∈R 当且仅当 R∉R ,这显然是矛盾的。所以我们的假设是错误的,即不存在这个集合。

和罗素悖论有异曲同工之妙的,类似这样的集合也是不存在的:S={x:x }。

证明如下:

假设S 是存在的,让 n 是 S 中最小的数(这暗示了 n∈S ),那么 n 就是“最小的不能用二十个字以内定义的自然数”。一不小心,我们用18个字定义了 n ,所以 n∉S 。矛盾由此而生: n∈S∧n∉S 。所以 S 是不存在的。

公理化集合论的补救

会产生矛盾命题的系统显然不能让人满意,也承担不了构建数学的使命。公理化集合论采取了一些措施,使其不会产生上面说的两个矛盾的集合。那就是公理化集合中的子集公理:对任意的集合A,都存在一个集合B,其元素是集合A中满足一个给定条件的元素。 ∀A∃B∀x(x∈B ↔ (x∈A&φ(x))) 其中 φ(x) 是 x 满足的条件,必须为一阶逻辑公式。至于为什么有了这个公理就可以避免产生上述的 R 和 S 。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

宠,唯爱一生 连载中
宠,唯爱一生
爱吃香草大富婆
人的一生有很多选择,如果让你有机遇你愿意踏入吗?一个规则的制定者,一个规则下的遵守人,如何擦出火花。请问瓦洛克先生愿意娶文文女士,执子之手与......
31.6万字9个月前
无限:古堡之诗 连载中
无限:古堡之诗
槐x2
这是一个古怪的世界,所有人都被【系统】分配进各个无限流游戏关卡副本中【古堡之诗】通关率5%,危险率???但仍有倒霉蛋被分配在一起,6人一组作......
8.1万字7个月前
ourname 连载中
ourname
木楚晴天
一丢丢科幻,青春的故事,我们在一起的美好日子和一些无法用言语理解的事情
2.3万字6个月前
虚拟男友太气人 连载中
虚拟男友太气人
杨小八
为拒绝孤寡小青蛙,选择虚拟男友快速脱单,没想到这个男友会气人!甜甜的恋爱也太难了吧!
0.9万字5个月前
梦痕搁浅 连载中
梦痕搁浅
赵阳天
8.7万字5个月前
梦回职中,继续保持优秀 连载中
梦回职中,继续保持优秀
九辞0901
十七岁和家里赌气辍学出去创业,但事不如愿,不到一年还是失败了,但一场意外的车祸竟让我回到了职中时代,回顾前世历历在目,被下定决心要做回之前那......
4.8万字3个月前