数学联邦政治世界观
超小超大

罗素悖论

本文介绍罗素悖论。

朴素集合论大约是这样考虑集合是否存在的:如果你能描述元素的性质,那么存在一个集合,它包含所有符合该性质的元素。这也是为什么在朴素集合论中我们会这样表示一个集合:{x:φ} ,其中 φ 是元素的性质。这就引发了著名的罗素悖论。

罗素悖论

考虑这样一个集合:R={x:x ∉ x} ,它是所有不属于自身的元素的集合。既然我们能够描述集合中元素的性质,那么这个集合就应该存在,但真的是这样吗?

假设该集合存在,我们不禁想问这样一个问题:R是否属于它自己?如果R∈R 那么 R 需要满足集合 R 中元素的性质: x∉x ,也就是说 R∉R ;如果 R∉R ,显然 R 符合我们所描述的性质: x∉x ,那么 R∈R 。于是: R∈R 当且仅当 R∉R ,这显然是矛盾的。所以我们的假设是错误的,即不存在这个集合。

和罗素悖论有异曲同工之妙的,类似这样的集合也是不存在的:S={x:x }。

证明如下:

假设S 是存在的,让 n 是 S 中最小的数(这暗示了 n∈S ),那么 n 就是“最小的不能用二十个字以内定义的自然数”。一不小心,我们用18个字定义了 n ,所以 n∉S 。矛盾由此而生: n∈S∧n∉S 。所以 S 是不存在的。

公理化集合论的补救

会产生矛盾命题的系统显然不能让人满意,也承担不了构建数学的使命。公理化集合论采取了一些措施,使其不会产生上面说的两个矛盾的集合。那就是公理化集合中的子集公理:对任意的集合A,都存在一个集合B,其元素是集合A中满足一个给定条件的元素。 ∀A∃B∀x(x∈B ↔ (x∈A&φ(x))) 其中 φ(x) 是 x 满足的条件,必须为一阶逻辑公式。至于为什么有了这个公理就可以避免产生上述的 R 和 S 。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

世界是个甜蜜的童话 连载中
世界是个甜蜜的童话
童话仙子
讲述南星自幼被南书收养的故事
0.6万字5个月前
我将不断追寻精神的本真:两个人的孤独方程 连载中
我将不断追寻精神的本真:两个人的孤独方程
*夜半太阳*
有关于维持时空稳定的失落之石遭到破坏使时空重组,发生在混沌世界的一个小小故事
0.5万字5个月前
我给皇叔追皇姐 连载中
我给皇叔追皇姐
紫玉甜
凌犀“世人皆知我爱孟婆,却无人知晓我爱得是你,再见之时我已是月老玄七”钰华“世人皆知我心系天下苍生,却无人知晓我为护你,方为三界之主,再见之......
8.4万字3个月前
岁岁闲 连载中
岁岁闲
慕迟遇
生活琐碎的片段
14.9万字3个月前
月绵 连载中
月绵
苍苒
麓夜绵,皇城弃女,身负神血,手持轮回笔与清心铃,却不知自己正是三界动荡的钥匙。
4.5万字2个月前
生灵元 连载中
生灵元
雅馨静怡
拥有神明垂涎的力量的少女不接受既定的命运
11.1万字1周前