数学联邦政治世界观
超小超大

莱因哈特

已知κ 是超级莱因哈特基数,则 Vκ 是 V 的初等子模型,但对于莱因哈特基数我们并不能得到这个结论,因为莱因哈特基数不是一阶可定义的,所以不一定会小于某个 Σₙ-正确基数,而本文则提供了一个证明思路以说明存在一个模型,在其中莱因哈特基数不是 Σ₃-正确基数,甚至小于 Σ₃-正确基数。

那么此处假设κ 是莱因哈特基数则 Vκ 是 V 的 Σ₃-初等子模型:

让我们在 ZF+“存在x,存在y,x 是伯克利基数并且 y 是大于 x 的不可达基数”下证明

记δ 是伯克利基数而 θ 是大于 δ 的最小不可达基数

根据伯克利基数的定义,可知对任意传递集M ⊆ Vθ ,均存在非平凡初等嵌入 j:M → M 并且 cr(j)<δ ,故 (Vθ,Vθ₊₁) 也是二阶 ZF+存在莱因哈特基数”的模型,记 κ 为这个莱因哈特基数

由于Vθ 中不会存在 δ ∈ M 但却不存在 j:M → M 并且 vr(j)<δ 的 M 和 j ,所以 δ 在 Vθ 中仍是伯克利基数。故 Vθ 满足“存在x,x是伯克利基数”

但因为莱因哈特基数也是可扩基数,由于最小的伯克利基数下不存在可扩基数,所以κ 仅是在 Vθ 中被认为是莱因哈特基数和可扩基数,在 V 中并不是

可由于Vθ 满足“存在x,x是伯克利基数”,而这是一个 Σ₃ 命题,故 Vκ 也满足“存在x,x是伯克利基数”。记 σ 为这个伯克利基数,显然 σ 在 V 中也不被认为是伯克利基数

但既然Vκ 认为 σ 是伯克利基数,考虑到 σ<κ 并且 κ 下存在无界多个不可达基数,就必然存在无界多个大于 σ 的不可达基数,记第二个大于 σ 的不可达基数为 𝓠

由于V𝓠 中不会存在 σ∈M 但却不存在 j:M → M 并且 cr(j)<σ 的 M 和 j ,所以 σ 在 V𝓠 中仍是伯克利基数。

故V𝓠 满足 ZF+“存在x,存在y,x 是伯克利基数并且 y 是大于 x 的不可达基数”

而如果Vθ 中存在 Σ₃-正确基数 λ<κ ,而 Vλ 满足“存在x,x是伯克利基数”,记 σ 为这个伯克利基数,由于 κ 下存在无界多个不可达基数,Vθ 至少满足“存在两个大于 σ 的不可达基数”这一以 σ 为参数的 Σ₃-命题,故 Vλ 也满足。记第二个大于 σ 的不可达基数为 𝓠 ,则 V𝓠 满足 ZF+“存在x,存在y,x 是伯克利基数并且 y 是大于 x 的不可达基数”。

伯克利基数怎么这么弱,Vθ 居然都不满足存在一个 Σ₃-正确基数下存在无界个不可达基数

数学往往如此奇妙,虽然我不知道可扩基数的两个定义的等价是怎么证的

即对任意序数λ ,均存在 j:Vκ₊λ → Vⱼ₍κ₎₊λ

和对任意序数λ ,均存在 j:Vκ₊λ → Vⱼ₍κ₎₊λ 并且 λ<j(κ) 等

但假设ZF 是一致的和“怎么可能会不存在大于伯克利基数的不可达基数”的哲学信念下, ZF 肯定证不了这两命题等价。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

我靠养鱼,日常变美 连载中
我靠养鱼,日常变美
寒时温
快穿流,不喜勿入(日更2000~4000)一句话简介:我靠养鱼,日常变美!颜末小姐的鱼塘壮大史。第一处鱼塘:网恋选我,我超甜第二处鱼塘:恋综......
56.4万字2周前
清冷钓系美人每天都在修罗场 连载中
清冷钓系美人每天都在修罗场
栖行止
谢笺屿长发窄腰,拥有一双纯净澈透的冰蓝色凤眸,浑身散发的清冷圣洁气息,让他稳坐s市首校磬华大学高岭之花的宝座美人清净自持,端方矜贵,走到哪里......
86.9万字2周前
雅家:六大天王 连载中
雅家:六大天王
77小X
原创男主角女主角
4.0万字3周前
春日樱花梦 连载中
春日樱花梦
春粉映蓝
《春日樱花梦》是一部描绘少年小枫在春日小镇上的一段奇妙旅行的小说。故事讲述了小枫在一个樱花盛开的午后,被淡紫色的樱花瓣和古老桥梁所吸引,踏上......
0.2万字1周前
十二星座之星空璀璨 连载中
十二星座之星空璀璨
陌cc
当你仰望天空,星空璀璨,繁星闪耀,如此美丽的背后究竟是怎样的凶险和困境,才有如此漂亮的星空呢?星空之下隐藏的秘密又是什么呢?|星空如此璀璨,......
6.3万字1周前
疯子又来啦! 连载中
疯子又来啦!
星之曰月
修仙小说,随便磕回魂肉魄轮回尽,亦是相回白雪纷。每世抗命残伤奄,血发污衣浸红身。自曾梦影现故因,终是相遇还恩人。二世帮协将死人,长貌如吾一相......
2.3万字4天前