数学联邦政治世界观
超小超大

莱因哈特

已知κ 是超级莱因哈特基数,则 Vκ 是 V 的初等子模型,但对于莱因哈特基数我们并不能得到这个结论,因为莱因哈特基数不是一阶可定义的,所以不一定会小于某个 Σₙ-正确基数,而本文则提供了一个证明思路以说明存在一个模型,在其中莱因哈特基数不是 Σ₃-正确基数,甚至小于 Σ₃-正确基数。

那么此处假设κ 是莱因哈特基数则 Vκ 是 V 的 Σ₃-初等子模型:

让我们在 ZF+“存在x,存在y,x 是伯克利基数并且 y 是大于 x 的不可达基数”下证明

记δ 是伯克利基数而 θ 是大于 δ 的最小不可达基数

根据伯克利基数的定义,可知对任意传递集M ⊆ Vθ ,均存在非平凡初等嵌入 j:M → M 并且 cr(j)<δ ,故 (Vθ,Vθ₊₁) 也是二阶 ZF+存在莱因哈特基数”的模型,记 κ 为这个莱因哈特基数

由于Vθ 中不会存在 δ ∈ M 但却不存在 j:M → M 并且 vr(j)<δ 的 M 和 j ,所以 δ 在 Vθ 中仍是伯克利基数。故 Vθ 满足“存在x,x是伯克利基数”

但因为莱因哈特基数也是可扩基数,由于最小的伯克利基数下不存在可扩基数,所以κ 仅是在 Vθ 中被认为是莱因哈特基数和可扩基数,在 V 中并不是

可由于Vθ 满足“存在x,x是伯克利基数”,而这是一个 Σ₃ 命题,故 Vκ 也满足“存在x,x是伯克利基数”。记 σ 为这个伯克利基数,显然 σ 在 V 中也不被认为是伯克利基数

但既然Vκ 认为 σ 是伯克利基数,考虑到 σ<κ 并且 κ 下存在无界多个不可达基数,就必然存在无界多个大于 σ 的不可达基数,记第二个大于 σ 的不可达基数为 𝓠

由于V𝓠 中不会存在 σ∈M 但却不存在 j:M → M 并且 cr(j)<σ 的 M 和 j ,所以 σ 在 V𝓠 中仍是伯克利基数。

故V𝓠 满足 ZF+“存在x,存在y,x 是伯克利基数并且 y 是大于 x 的不可达基数”

而如果Vθ 中存在 Σ₃-正确基数 λ<κ ,而 Vλ 满足“存在x,x是伯克利基数”,记 σ 为这个伯克利基数,由于 κ 下存在无界多个不可达基数,Vθ 至少满足“存在两个大于 σ 的不可达基数”这一以 σ 为参数的 Σ₃-命题,故 Vλ 也满足。记第二个大于 σ 的不可达基数为 𝓠 ,则 V𝓠 满足 ZF+“存在x,存在y,x 是伯克利基数并且 y 是大于 x 的不可达基数”。

伯克利基数怎么这么弱,Vθ 居然都不满足存在一个 Σ₃-正确基数下存在无界个不可达基数

数学往往如此奇妙,虽然我不知道可扩基数的两个定义的等价是怎么证的

即对任意序数λ ,均存在 j:Vκ₊λ → Vⱼ₍κ₎₊λ

和对任意序数λ ,均存在 j:Vκ₊λ → Vⱼ₍κ₎₊λ 并且 λ<j(κ) 等

但假设ZF 是一致的和“怎么可能会不存在大于伯克利基数的不可达基数”的哲学信念下, ZF 肯定证不了这两命题等价。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

最后让我在看ta 连载中
最后让我在看ta
南屿崽
我是林川,永远爱着别人31的林川的想问29岁的林川,值得吗?我就是我,谁都替代不了四季的轮回,我们还会在见面的最后在看ta,看的是她还是他记......
10.8万字5个月前
说出你的故事 连载中
说出你的故事
独向隅
高考毕业后易暮意外参与了剧本杀游戏,为了保证存活努力挣取积分,演绎自己的剧本,最终迎来属于自己的归宿
1.9万字3个月前
成为第二人格 连载中
成为第二人格
风起雾散尽
你是谁,谁是我你听得到吧,隐藏在我身体里的怪物我们本就是一个人,与我融为一体吧【无co】所有人都是主角的一缕灵魂
0.9万字3个月前
愚人众执行官深空之恋(又名:原神深空传) 连载中
愚人众执行官深空之恋(又名:原神深空传)
琉璃女帝
愚人深空智慧超能力执行官传奇无人深空恋与制作人恋与深空探险冒险探索背景的“智慧超能力执行官传奇”故事:愚人众执行官恋与深空智慧城市智慧智能机......
64.7万字2个月前
异世界转生重生 连载中
异世界转生重生
黑土还不阴
怎么说呢,男主角转生变成少女
1.6万字2个月前
穿越之我成为了反派 连载中
穿越之我成为了反派
暖栀午后
我靠,怎么回事?我不是小团宠吗?怎么成了反派!成反派也就算了,为什么气运之子这么多?还好,系统出现,反派系统夏绫:宿主真正的反派,应该凶焰滔......
2.9万字5天前