数学联邦政治世界观
超小超大

阿罗定理

阿罗不可能定理确实会在无限模型下不成立(1972年的结果):阿罗定理、多个代理人和隐形独裁者*

Alan P.Kirman和Dieter Sondermann

布鲁塞尔自由大学和鲁汶天主教大学运筹学和计量经济学中心

1.导言

阿罗[1]的不可能性定理表明,在有限个人的情况下,满足一定公理的社会福利函数隐含着一个独裁者的存在。在最近的一篇论文Fishburn[4]中提出,当系统中个体的数量是无穷大时,这个问题就消失了。

我们证明,给定一个满足Arrow公理的社会福利函数,我们可以刻画某些“独裁”的个体集合。这种描述的直接结果是,在有限个体数目的情况下,个体独裁者的存在,即,它给出了阿罗定理的证明。然而,更重要的是,同样的特征表明,有效的专政也在无限级中持续存在。事实上,我们可以表明,如果一个人选择总人数中的某个正比例,无论这个比例有多小,总有一个群体在总人数中所占的比例较小,其偏好决定了社会秩序。或者,我们可以把结果说成,虽然总有一个“独裁者”,但在无限的情况下,他可能是“隐形的”。

我们的证明并不局限于有限个选择的情况。我们只要求有三个以上,但在选择的数目有限的特殊情况下,我们可以对“看不见的独裁者”作出解释。

With this notation Arrow’s axioms can be stated as follows (see Arrow [1]and Fishburn [4]):

(A1) (Alternatives.)│X│≥ 3.

(A2) (Social Welfare Function.) σ is a function on F into 𝓢

(A3) (Unanimity.) For all α,b ∈ X & f∈F,αf(V)b ⇒ ασ(f)b.

(A4) (Independence.)For all α,b ∈X & f,g∈F,f=g on {α,b} ⇒ σ(f)=σ(g) on {α,b}.

(A5) (No Dictatorship.) There is no υ₀∈V such that,for all α,b∈X & f∈F,αf(υ₀)b ⇒ ασ(f)b.

Arrow proved in [1]:

ARROW’S THEOREM. If V is finite,then(A1)-(A5)αre inconsistent.

Fishburn proved in [4]:

FISHBURN’S THEOREM. If V is infinite,then (A1) through (A5) αre consistent.

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

寻秘之秋 连载中
寻秘之秋
轻吟吟吟
流光溢彩的少年不疾不徐撞入她的眼眸,无数问题在她的心中生根发芽。“你好知秋,我是旬阳笙。”“这是我们第23次的重逢。”而她不知道的是,少年的......
0.2万字10个月前
凌安诺 连载中
凌安诺
埋葬_00207106129821649
一位是清冷的大师兄,一位是皎皎如月的小师妹,他们是人人称赞的模范夫妻……只是小师妹消声灭迹,寻不到人影。大师兄身负重伤,昏迷不醒……
0.7万字9个月前
幻境大陆 连载中
幻境大陆
彩蝶灵舞
一本属于和魔法相似的魔法小说,一共有十位主角,五位男生,五位女生。不要把其他人当配角看,重复一遍“十位主角”。
3.2万字9个月前
杀死我后通关 连载中
杀死我后通关
梅华_70607292393185874
为了重获自由,不择手段,可是…
1.0万字5个月前
山茶随笔 连载中
山茶随笔
山茶与月
一些美好的幻想
7.0万字5个月前
陶者碎文录 连载中
陶者碎文录
陶者
不定时更新,包括但不限于同人,原创,言情,纯爱……嗯,反正想到什么就写什么啦,文笔不好且文风和思维一样跳跃(同人可能涉及拆官配/邪教cp,写......
0.7万字3个月前