数学联邦政治世界观
超小超大

阿罗定理

阿罗不可能定理确实会在无限模型下不成立(1972年的结果):阿罗定理、多个代理人和隐形独裁者*

Alan P.Kirman和Dieter Sondermann

布鲁塞尔自由大学和鲁汶天主教大学运筹学和计量经济学中心

1.导言

阿罗[1]的不可能性定理表明,在有限个人的情况下,满足一定公理的社会福利函数隐含着一个独裁者的存在。在最近的一篇论文Fishburn[4]中提出,当系统中个体的数量是无穷大时,这个问题就消失了。

我们证明,给定一个满足Arrow公理的社会福利函数,我们可以刻画某些“独裁”的个体集合。这种描述的直接结果是,在有限个体数目的情况下,个体独裁者的存在,即,它给出了阿罗定理的证明。然而,更重要的是,同样的特征表明,有效的专政也在无限级中持续存在。事实上,我们可以表明,如果一个人选择总人数中的某个正比例,无论这个比例有多小,总有一个群体在总人数中所占的比例较小,其偏好决定了社会秩序。或者,我们可以把结果说成,虽然总有一个“独裁者”,但在无限的情况下,他可能是“隐形的”。

我们的证明并不局限于有限个选择的情况。我们只要求有三个以上,但在选择的数目有限的特殊情况下,我们可以对“看不见的独裁者”作出解释。

With this notation Arrow’s axioms can be stated as follows (see Arrow [1]and Fishburn [4]):

(A1) (Alternatives.)│X│≥ 3.

(A2) (Social Welfare Function.) σ is a function on F into 𝓢

(A3) (Unanimity.) For all α,b ∈ X & f∈F,αf(V)b ⇒ ασ(f)b.

(A4) (Independence.)For all α,b ∈X & f,g∈F,f=g on {α,b} ⇒ σ(f)=σ(g) on {α,b}.

(A5) (No Dictatorship.) There is no υ₀∈V such that,for all α,b∈X & f∈F,αf(υ₀)b ⇒ ασ(f)b.

Arrow proved in [1]:

ARROW’S THEOREM. If V is finite,then(A1)-(A5)αre inconsistent.

Fishburn proved in [4]:

FISHBURN’S THEOREM. If V is infinite,then (A1) through (A5) αre consistent.

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

一个誓言走一世 连载中
一个誓言走一世
情终须缘
复合√回家√蝶眸殉情黑化……(反正不虐,很甜)一笑倾国,再笑倾城。
10.1万字3周前
喜美:朦胧梦境 连载中
喜美:朦胧梦境
湫日有棂
禁一切作者:湫日有棂【祈念文学社】从学生时期便认识的我们,为什么最后没能走到一起?一场意外把美幻曦带到副本世界,需要前往一个个世界攻略喜易言......
14.7万字2周前
极狱——重生之光 连载中
极狱——重生之光
桉姸
剧情跟随故事发展而来
0.7万字2周前
(无限流)我就是想交个朋友 连载中
(无限流)我就是想交个朋友
麦穗花
【欢迎来到无限世界[域],在这里,特殊能力唾手可得,死亡更不是梦想,随时随地,身临其境,尖叫和欢笑,惊骇与心动,让我们——娱乐至死!】(ㅍ_......
1.3万字4天前
阿瑞亚大陆 连载中
阿瑞亚大陆
无名柳
(注:主角是短发的女性)人类世界以外的另一个空间,大陆的名字是直接引用了创世神的姓名。这片空间中诸多生灵相处和睦,无比美好。在那个扭曲微妙的......
22.1万字4天前
ch:平行恶世界人到来 连载中
ch:平行恶世界人到来
任彼安
先看第四章!人设cp!全员恶人的平行世界与主世界开始融合,相敌,相对,相帮,相助,背后又是何人在操控,而最后的结局是完全融合还是彻底分离呢?
5.5万字昨天