数学联邦政治世界观
超小超大

希尔伯特(三)

好了,现在最有趣的地方来了。这时候如果我们想要对这个骰子做一个观察,我们怎么办呢?我们需要让这个筛子落地。比如说我们现在拿着一个三维的笛卡尔坐标系,如果我们想要观察骰子的一面,那么很简单,我们把x-y屏幕端平,让骰子落到上面就可以了:骰子必定会有一面向上,并且哪一面向上,决定于它在落地的瞬间的方向:它虽然是概率性的,但是那个面与地面的夹角最小,它就更可能会以这个面落地 – 于是我们就可以观察这个骰子到底有几点。然而,我们的观察有很多形式,如果我们不关心这个骰子哪一面向下,而是观察它哪一条棱向下,怎么办?我们只需要报我们的坐标系旋转45°,比如说以水平的y轴向下,而另外两个屏幕个呈45°角。那么骰子落地时,就会有一条棱向上。我们就可以观察那一条棱 – 当然此时就意味着两个面向上了。同理,我们也可以观察一个角:我们只需要相应地旋转我们的坐标系就可以了。

因而,最终我们看到骰子确定的状态 – 是一个面、一条棱、还是一个角?- 完全取决于我们用这个三维坐标系以何种角度来“接”这个骰子。我们想要看一个面,我们就以一个平面来接它;我们想看一条棱,我们就用一条棱来接它;我们想看一个角,我们就用原点来接它。最终的结果,当然有概率性,但是概率却是由这个骰子落地时的角度决定的。我们观察到的一条确定的棱,可以是两个面的叠加,我们观察到的确定的角,可以是三条棱、或三个面的叠加。

在量子系统中,如果我们想观察位置,就要向位置本征态投影,如果想观察动量,就要向动量本征态投影,如果想观察能量,就向能量本征态投影。而观察的概率取决于态矢量的角度。我们观察到的确定的位置,可以是多个动量的叠加;我们观察到的确定的动量,可以是多个位置的叠加,如此等等,这和骰子的行为是何等相似!

所以说,量子态就是一个希尔伯特空间中的骰子;它按照薛定谔方程的确定演化,就是这个骰子在希尔伯特空间中的可预测旋转;它的观察过程,就是我们选取了一个角度来“接”这个骰子落地 – 不同的可观测量就是不同的角度,概率性就是骰子落地时的角度。

这么看来,波函数的叠加和坍缩,也并不神秘,不是吗?

神秘的是,这个骰子究竟是何种含义?

参考文献:

1. 事实上,复数给量子力学的形式理论带来了很多有趣的现象。有一种说法,就是说量子力学其实是一种最简单的复数域中的概率论 – 它把实数概率推广到复数中去了。这是一种很有意思的观点,但是我并不想从复数讲起。因而在本文的全文当中,我都忽略掉复数的性质,而只谈论实数波函数。但是你需要知道,这些谈论不是严谨的理论探讨,而是趣味性的科普探讨。

2. 我们已经知道,欧氏空间是这样一种集合,首先,它其间的所有矢量均满足可叠加性,严格讲是线性可叠加性。满足线性发展的空间我们可以称之为线性空间。在它其中定义了长度之后,这个集合可以称作巴拿赫空间(Banach space)。然后在在其中定义了角度,这个集合就是希尔伯特空间。而我们熟知的欧氏空间是一种特殊的希尔伯特空间:它定义在实数域中,并且有三个维度 。

3. 严格说,应该是它的实部是个正弦波,整个复函数波是在复空间旋转的复数。这一点,我们在本文加以简化,只用实部来表示。

4. 德布罗意波的一个最基本关系就是,粒子的动量与他的波长成反比,确定的波长就意味着确定的动量。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

疯子又来啦! 连载中
疯子又来啦!
星光曰月
天赐降福佑我族道却何曾手下留天道若不吾存留反了这天又如何回魂肉魄轮回尽,亦是相回白雪纷。每世抗命残伤奄,血发污衣浸红身。自曾梦影现故因,终是......
1.8万字9个月前
虚假的象牙塔 连载中
虚假的象牙塔
趁醉眠
“当我让他的画享誉世界时,我将取走他的生命——毕竟伟大的作品,是不可再生的,不是吗?”这是理想的象牙塔,也可以是一本充满欲望的故事书贪婪的饕......
0.3万字7个月前
十二星座之曙光现 连载中
十二星座之曙光现
soon曦童
“这是我们最后一次的朋友相称,站在赛场上,我们只是敌人关系。”——锦熙悦(白羊座)“即是决出生死的赛场,我也会依旧站在你身后保护你。”——泽......
1.5万字6个月前
夏芊月与魔法传说 连载中
夏芊月与魔法传说
猫忆蝶
讲的是一位少女,通过自己的努力,慢慢变强的故事
0.7万字6个月前
变成男人去救世 连载中
变成男人去救世
白云衣
兽人、羽人、鲛人…没带脑子,想哪儿是哪儿,大女主,全文女主最大。
7.3万字4个月前
岁岁闲 连载中
岁岁闲
慕迟遇
生活琐碎的片段
14.9万字3个月前