数学联邦政治世界观
超小超大

数学大厦轰然倒塌

3=0的经典伪证,似乎也是来自民科吧。

说这个伪证并不在于其本身的逻辑谬误,而是绝大多数人对于这个伪证的证伪方式也是伪证。换句话说,绝大多数人实际上并不能真正指出3=0 的错误之处,而只是单纯地依靠权威的结论去强行定义它是错误的。

不信大家可以尝试一下。

我们来看一个简单的二次方程。

x²+x+1=0 (1)

首先,我们可以将x=0 代入方程中,得到原方程不成立,所以 x=0 必定不是方程的根。

∵x=0

∴x²+x+1=1 ≠ 0

∴x ≠ 0

由于x ≠ 0 , 我们可以在等式两侧同时除以不为0的因式 x ,则有:

∵x ≠ 0

(1) 1

∴ ── ⇔ x+1+─=0

x x

1

∴x+1+─=0 (2)

x

又因为对于(1)式来说,我们可以通过移项的方式,得到以下关系:

x+1=–x² (3)

我们将(3)式代入(2)式之中,可以得到:

1

–x²+─=0 ⇔ –x³+1=0 (4)

x

对于(4)式来说,不难验证,x=1 为该方程的一个解。

我们再将x=1 代入原方程,则我们可以得到:

1²+1+1=0 ⇒ 3=0

从而,数学大厦轰然倒塌!

现在大家可以思考这样几个问题:

1. 直接将(4)式的解代回(1)式后,原有等式不成立意味着什么?

2. 在恒等变形的哪一步中引入了增根?为什么会引入增根?

3. 这一增根的引入是任意的吗?换句话说,如果我想写一个7=0的伪证,能通过类似的方式做到吗?

4. 此伪证的产生和原方程没有实数解有关系吗?换句话说,如果保证方程在实数范围内有解,按照类似的上述操作,就能保证不会引入不符合原方程的增根吗?

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

想要竹马甜甜的~ 连载中
想要竹马甜甜的~
九-儿
明明人家的时而霸道,时而温顺,可盐可甜,为什么我的竹马不一样?!在线等!急啊!!!
1.7万字6个月前
疯批实验体 连载中
疯批实验体
鸢源儿
疯批病娇六人✘单纯张
3.3万字5个月前
恋与伤 连载中
恋与伤
D王后
玄幻+虐恋+权谋+命相系+一本坏人泛滥的小说。讲述了四个大陆之间的感情纠葛。长篇小说!在欺骗,利用,谎言,杀戮,绝情中渲染虐的爱恋。每一次相......
78.0万字5个月前
小品一家人观影小品的各种身份 连载中
小品一家人观影小品的各种身份
彩虹神探警长
这里,小品一家人会观影身为学渣的小品的各种身份。
4.7万字2个月前
愚人众执行官深空之恋(又名:原神深空传) 连载中
愚人众执行官深空之恋(又名:原神深空传)
琉璃女帝
愚人深空智慧超能力执行官传奇无人深空恋与制作人恋与深空探险冒险探索背景的“智慧超能力执行官传奇”故事:愚人众执行官恋与深空智慧城市智慧智能机......
64.7万字1个月前
慕容归零 连载中
慕容归零
丽志_25672919270903971
慕容前世嫁给了蔡飞,蔡飞家暴直到而死都不明白是,原来蔡飞和慕楠早就勾搭在一起了。原来墨卿才是真正的爱我的,把她抱在怀里哭。蔡飞和慕楠你把墨卿......
5.1万字5天前