数学联邦政治世界观
超小超大

数学大厦轰然倒塌

3=0的经典伪证,似乎也是来自民科吧。

说这个伪证并不在于其本身的逻辑谬误,而是绝大多数人对于这个伪证的证伪方式也是伪证。换句话说,绝大多数人实际上并不能真正指出3=0 的错误之处,而只是单纯地依靠权威的结论去强行定义它是错误的。

不信大家可以尝试一下。

我们来看一个简单的二次方程。

x²+x+1=0 (1)

首先,我们可以将x=0 代入方程中,得到原方程不成立,所以 x=0 必定不是方程的根。

∵x=0

∴x²+x+1=1 ≠ 0

∴x ≠ 0

由于x ≠ 0 , 我们可以在等式两侧同时除以不为0的因式 x ,则有:

∵x ≠ 0

(1) 1

∴ ── ⇔ x+1+─=0

x x

1

∴x+1+─=0 (2)

x

又因为对于(1)式来说,我们可以通过移项的方式,得到以下关系:

x+1=–x² (3)

我们将(3)式代入(2)式之中,可以得到:

1

–x²+─=0 ⇔ –x³+1=0 (4)

x

对于(4)式来说,不难验证,x=1 为该方程的一个解。

我们再将x=1 代入原方程,则我们可以得到:

1²+1+1=0 ⇒ 3=0

从而,数学大厦轰然倒塌!

现在大家可以思考这样几个问题:

1. 直接将(4)式的解代回(1)式后,原有等式不成立意味着什么?

2. 在恒等变形的哪一步中引入了增根?为什么会引入增根?

3. 这一增根的引入是任意的吗?换句话说,如果我想写一个7=0的伪证,能通过类似的方式做到吗?

4. 此伪证的产生和原方程没有实数解有关系吗?换句话说,如果保证方程在实数范围内有解,按照类似的上述操作,就能保证不会引入不符合原方程的增根吗?

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

三世奇缘——第一世:人间传奇 连载中
三世奇缘——第一世:人间传奇
Aot
她,第一世21世纪杀手NO.1;第二世人见人怕的女魔头;第三世的她又是什么?又会创造什么奇迹?他,神界十重天的太子,当他下凡历劫遇见她时会擦......
0.4万字3周前
喜美:朦胧梦境 连载中
喜美:朦胧梦境
湫日有棂
禁一切作者:湫日有棂【祈念文学社】从学生时期便认识的我们,为什么最后没能走到一起?一场意外把美幻曦带到副本世界,需要前往一个个世界攻略喜易言......
14.7万字2周前
女寝海龟汤实录 连载中
女寝海龟汤实录
养老院里劈过腿
每日一则海龟汤。女寝444成员:橙子、花花、佳琪、小青档案记录&管理人员:~养老院里劈过腿~
1.0万字2周前
江怀南岸 连载中
江怀南岸
湫已
他可不是什么救赎,是一个实实在在的深渊,而我,困于深渊,早已见不到阳光后来我在废墟里竟然看见,那处死掉的玫瑰花圃又重新发了芽,我才明白,那是......
1.5万字2周前
时光机恋曲 连载中
时光机恋曲
参宿列队
刘文和一个异国女孩拯救时空的故事,不甜不要钱。
2.5万字5天前
万人迷她又被强取豪夺了 连载中
万人迷她又被强取豪夺了
李朵儿
【女主万人迷】+【众多修罗场】+【男神收割机】+【颜值巅峰】+【娇软美人】+【可甜可盐】+【强取豪夺】+【玛丽苏】+【绿茶美人】花琉璃只想完......
63.0万字4天前