数学联邦政治世界观
超小超大

数学问题

当x-0时,与X^2为同阶无穷小的是什么

我们需要分析每个选项在x趋向于0时的行为,并确定哪个选项与x²具有相同的阶数。

(A)1-cos2x 我们知道,当x趋向于0时,cos(x)趋向于1。因此,1-cos2x趋向于1-1=0。此外,我们可以使用泰勒展开来近似cos(x),得到cos(x) ≈ 1 - x²/2。因此,1-cos2x ≈ 1 - (1 - (2x)²/2) = 2x²。所以,1-cos2x是x²的同阶无穷小。

(B)x²sinx 当x趋向于0时,sin(x)趋向于0,但它的阶数是1,因为它的一阶导数在x=0处不为0。因此,x²sinx的阶数是2,但它不是x²的同阶无穷小,因为x²sinx的阶数实际上是x³的阶数。

(C)√1+x-1 我们可以使用泰勒展开来近似√1+x,得到√1+x ≈ 1 + x/2。因此,√1+x-1 ≈ x/2。所以,√1+x-1是x的同阶无穷小,而不是x²的同阶无穷小。

(D)1-cosx 我们已经知道,1-cosx ≈ x²/2,这是x²的同阶无穷小。

综上所述,选项(A)1-cos2x和选项(D)1-cosx都是x²的同阶无穷小。然而,题目可能存在误差,因为通常情况下,多项选择题的答案应该是唯一的。如果题目没有误差,那么(A)和(D)都是正确答案。如果必须选择一个,我们可以根据泰勒展开的精确度来决定,因为1-cos2x的泰勒展开给出了更精确的2x²,而1-cosx的泰勒展开给出了x²/2。因此,我们可以选择(A)作为更精确的答案。

最终答案:(A)1-cos2x。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

梦的结局I 连载中
梦的结局I
紫苜花
“我以天下为棋,赌我胜它半子。”“你说,我们还有见面的机会吗?”“我好想你,我错了……”“师尊你何时归来。”“主上,你不在的日子,总归是无趣......
1.9万字6个月前
雁归有时 连载中
雁归有时
生命高度
本书别名《没有明天》【虐文】【已完结】结合了某某些真实事件改编、以文字的方式呈现彭萧是在家暴家庭中长大,七岁那年,父亲残忍杀害母亲,22岁,......
9.3万字5个月前
丧尸界里当军师 连载中
丧尸界里当军师
万紫万红
1V1四对cp凌芊芊从小与他人不同一次她跟随老奶奶进入另一个异空间。当起了界丧尸家族的国师。开启国师之路,慢慢的自己的身世之谜浮出水面知晓自......
23.6万字5个月前
垃圾小短文合集 连载中
垃圾小短文合集
一一默rycidxy
所有内容都为言情。这一本是黑历史。我自己写的一些篇章和和别人一起写的一些篇章,会汇集到这本书里。类型多样,风格多样。
2.1万字5个月前
元灵纪之恶魔之影 连载中
元灵纪之恶魔之影
一只惵
“从前有一个恶魔…”自古以来,人们总是在杀死或封印恶魔,可谁告诉我为什么天下有这么多恶魔?
1.7万字2个月前
似梦(原:无限流之惊悚梦境世界) 连载中
似梦(原:无限流之惊悚梦境世界)
夭四水
在某一天,尹澜莫名穿到了一个被说成是无限流的地方,里面的经历很真实,他认识了很多过命朋友,他们在这个地方一起度过了很多时光,后面那个自称是系......
1.6万字1个月前