数学联邦政治世界观
超小超大

贝特朗悖论

The Bertrand Paradox

在一个圆中随机画一条弦,这条弦的长度超过该圆内切等边三角形一边的概率是多少?

至少有三种不同的方法会导致不同的答案:

1. 随机端点法:在圆的周长上随机选择两点形成一个弦,这条弦长度超过三角形一边的概率是1/3。

2. 随机半径点法:选择半径上的一个点并画一个垂直弦,这条弦长度超过三角形一边的概率是1/2。

3. 随机中点法:在圆内随机选择一个点作为弦的中点,这条弦长度超过三角形一边的概率是1/4。

贝特朗悖论由法国数学家约瑟夫·贝特朗于1889年提出。这个问题看起来简单,但答案可因随机选择弦的方式不同而有不同的解释。贝特朗悖论是涉及几何概率问题的经典悖论。不要与“贝特朗盒悖论”混淆,尽管它们都是以同一位数学家的名字命名的。后者是由推理中的常见谬误导致的。

破解

这是由无穷性引起的悖论。

设每单位长度上有n个点。

使用随机端点法,圆周上有2πrn个点。所以,抽样就是从2πrn个点中选择2个点。

使用随机半径点法,直径上有2rn个点。直径上的每个点对应于弦的两个端点。所以,抽样是从4rn个点中选择2个点。

使用随机中点法,圆的面积内有πr2n个点。面积内的每个点对应于弦的两个端点。所以,抽样是从πr2n个点中选择2个点。

如下所示,如果我们假设半径上的点按长度均匀分布,邻近的边缘(圆周上的点)不按长度均匀分布,面积内的点也不按面积均匀分布。

1、2、3

a、b、c

i、ii、iii

当长度(a)=长度(b)=长度(c)时,

长度(i)<长度(ii)<长度(iii),并且

面积(1)>面积(2)>面积(3)。

同样地,如果我们假设圆周上的点是均匀分布的,那么半径上或面积内的点则不是。并且,如果我们假设面积内的点是均匀分布的,那么半径上或圆周上的点则不是。当点的分布不均匀时,画出随机的弦是不可能的。因此,假设这3种抽样方法都是随机的是错误的。

那些支持存在矛盾的人错误地认为无穷大和无穷小是数字,以至于三者之中没有一个拥有比其他两个更多或更少的点。然而,我们需要对无穷小有一个恰当的定义。无穷小不是一个数字,而是一个未知数字的属性。因此,如果我们假设每单位长度的最小刻度是(m),它具有无穷小的属性,那么每一种抽样的抽样总体都是有限的。假设一种方法是随机的将使另外两种非随机。随机性应该根据抽样方法来定义。只有当每个样本被抽样的概率相同时,我们才可以说抽样是随机的。

因此,只要我们正确理解无穷和随机抽样的本质,我们就可以解决这个悖论。

摘自专栏《悖论》

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

玄界:生命与自然双灵能,在玄幻星际杀疯了! 连载中
玄界:生命与自然双灵能,在玄幻星际杀疯了!
俺是两点半老师哩
『科技与灵能共存世界观,讲述的是女主两点半在玄幻世界经历各种各样有趣的事,结识许多的朋友,大女主,可以嗑cp,没有男朋友设定√,但是有很多男......
5.6万字5个月前
穿成电竞文里的菜鸡小炮灰 连载中
穿成电竞文里的菜鸡小炮灰
哒布吉呀
#年度MVP选手林宿雨穿书了#(双男主)(文中三观不代表作者三观,真的真的真的!)1林宿雨在带领自家俱乐部取得中国赛区的冠军,还没有享受冠军......
9.4万字5个月前
秋风下的女孩 连载中
秋风下的女孩
166***982_8882861693
同化,初心,消散
0.3万字4个月前
续写冰缘 连载中
续写冰缘
小艾呀
应盏清智性恋超绝人气x同为天涯沦落人二姐应璟宜x表面冷面内心自我攻略尧王江钼X搞笑将军成映剑应盏清是应府七小姐,母亲早亡,与府内二小姐应璟宜......
2.1万字2个月前
权能:此间无梦 连载中
权能:此间无梦
黑箱子
我们的故事,是过去,是现在,是未来。冒险从不停歇!!!
0.4万字2周前
梦境丶 连载中
梦境丶
女青丶
死后意外进入梦境世界为了再次见到父母她开启了收集情感值的冒险以为事情会顺利进行可梦境背后好像有一个人在监视着一切……
1.0万字5天前