数学联邦政治世界观
超小超大

逻辑论文

注:(Ω-逻辑),(2/2)章节!

2.33,我们有Mα|=B∈MCåM。因此:

(1) MCåM|=ξ(CåM,θ)

(2) MCåM|=ξ(B,θ)。

设N∈MCåM是ZF c的一个Ct.M,它既是cåM-闭的又是Bclosed的(见注2.30)。那么,对于任何β,如果Nβ|=ZF c,则

Nβ|=θ∧,θ,这是不可能的。

一个完全对称的论点会在

假设ZF C`Ω θ,从而表明θ是不可判定的

在ZF C inΩ-思维方式中关于证明长度的一个更精细的概念Ω-逻辑由Wadge提供

实数集的层次结构(参见[9]和[16])。

我们现在将看到Ω 在强迫下也是不变的。在里面

为了证明这一点,我们将使用以下结果(见[6],第3.4节)。

定理2.34。假设存在一个适当的Woodin基数类,δ是Woodin基数,j:V→ M[G]是嵌入派生的

从P<δ的强迫。则V[G]中所有实数的泛Baire集是

普遍存在于M。

定理2.35。([17])假设存在一个适当的Woodin类大基数。然后对于所有P,

T`Ω ξiff

V P²“T`Ω “

证明:⇒) 让A成为ΩT-证明。

则L(A,R)²M(M是ZF c∧Mα|=T→ Mα²ξ)。

假设G⊆P是V-泛型。根据V〔G〕中的推论2.20,

L(AG,RV[G])²M(M是ZF c∧Mα|=T→ Mα²ξ)。

由于A是uB,根据备注2.6,AG是V[G]中的uB。因此,AG是ΩT-在V[G]中的Γ的证明。

⇐) 假设V P²“T`Ω “。设γ是一个强不可及基数P∈Vγ。选择一个Woodin基数δ>γ。考虑a=Pω1(Vγ)∈P<δ

(见事实1.4)。强迫P<δ低于a使Vγ可数,因此存在

偏序的P-名称τ,使得P<δ(a)强迫等价于P*τ。

固定G⊆P<δ(a)V-泛型,设j:V→ M是诱导嵌入。

那么j(δ)=δ和V[G]²M<δ⊆M。我们有V[G]=V[H0][H1] H0⊆P,V-属。因此,V[H0]²“T`Ω “,由一些uB集合A见证。

根据这个定理的另一个方向,V[G]²“T`Ω “,由AG见证。

因此

V〔G〕²“AG是uB∧N∀α(N是ZF c∧α∈关于∧Nα|=T→ Nα²ξ)“。

根据定理2.34,AG是M中的一个uB集,并且由于M在可计数序列,

M²“N(N是ZF c∧→Nα²ξ)“。因此,M²“T`Ω “。通过应用诱导初等

嵌入,我们有V²“T`Ω “。

2.5.A-闭合与强A-闭合。

回想(定义2.16)对于A⊆R,(A

的片段)ZF C是强A闭的,如果对于所有偏序集P∈M和所有M属G⊆P,M[G]∈A∈M[G]。

我们将看到Ω 如果我们使用

在其定义中用强A-闭包代替A-闭合。

回想一下一组实数上尺度的定义(参见[9]):

定义2.36。如果A是一组实数,那么A上的标度就是一个序列

满足以下性质的A的预序的h≤i:i<ωi

hxi:i<ωi是a中包含的收敛到实x和f:ω的序列→ ω是这样一个函数

ω)(xf(i)≤i xj∧xj≤i xf(i)),

则x在A中,并且对于所有i<ω,我们有x≤i xf(i)。

如果Γ是在连续预映象下闭的点类,a∈Γ,且h≤i:i<ωi是a上的一个标度,则h≤i:i<ωi称为Γ-标度,如果存在集合X,Y⊂ω×ω×ωΓ(用对应的常数函数),使得

X={(i,X,y)|X≤i y}=(ω×ω。

我们说Γ具有标度性质,如果每个A∈Γ都有一个Γ-标度

  

如果存在一个适当的Woodin基数类,那么uB集具有标度性质(这一事实是由于Steel;例如,

[6]第3.3节)。

如果h≤i:i<ωi是实数集a上的一个标度,并且对于每个i∈ω和x∈a

我们设ρi(x)表示x的≤i秩,则数

S={(S,σ)∈ω

<ω×Ord<ω|∃x∈A x¼|s|=s∧hρi(x):i<|s|i=σ}

投影到A.我们称之为与比例相对应的数。

下面的论点来自[11]。

定理2.37。设A是一个普遍的Baire实数集,并假设

M是ZFC的A闭合c.t.M。设B表示A的补码

h≤iA:i<ωi是由uB集X和Y见证的a上的uB标度,设h≤iB:i<ωi是由uB集W和Z见证的B上的uB标度,并且

设M是X×Y×W×Z闭合的。那么M是强A闭合的。

证明:首先注意,对于任何一个有充分基础的模型N,如果{N∈X,N∈Y A} ∈N,则h≤iAåN:i<ωi在N中,并且是AåN在N中的一个标度(并且类似地,对于W、Z和B)。此外,如果N是X×Y×A闭的,那么对于N中的每一个偏序P,都有P名χP、υP和αP,使得对于相当多的N一般滤波器g⊂P,X∈N[g]=χg,Y∈N[g]=υg

且A≠N[g]=αg(这一点的证明类似于引理2.11和2.13的证明)。

设γ是M中的序数。由于Coll(ω,γ)是齐次的,并且M是X×Y×A-闭合,对于Coll(ω,γ)中的每一对条件p,q,都存在Coll(ω,γ)中包含的M-一般滤波器gp和gq使得p∈gp,q∈gq,M[gp]=M[gq],igp[χColl(ω,γ)]igq[χColl(ω,伽马)]=M[gp]≠X,igp[υColl(ω,γ)]igq[υColl(ω、γ)]=M[gp]≠Y,和igp[αColl(ω,γ)]igq[αColl[ω,γ]=M[gp]åA。

因此,对于每对(a,b)∈ω<ω×Ord<ω,中的空条件Coll(ω,γ)决定(a,b)是否在与尺度对应的数中与χColl(ω,γ)和υColl(Ω,γ)相关,因此数Tγ对应

在Coll(ω,γ)的任何M-一般扩展中,这个尺度已经存在于M中。

由于存在一个模型N,使得{N∈a,N∈X,N≠Y}∈N和Tγ是N,p[Tγ]V⊂(因为X和Y定义了a上的比例)。以上备注适用于B、W和Z、 M中有一个数Sγ,它在V中投影到一个子集

此外,Tγ和Sγ在所有强迫中投影为补码Coll(ω,γ)对M的推广。

设P是M中的偏序,则P正则嵌入到某个偏序中形式Coll(ω,γ)的阶,γ∈OnåM。修复这样一个γ,我们有M的任何P-一般扩张N,P[Tγ]N=A∈N和P[Sγ]N=B∈N,让关系`Ω− 定义为`Ω (定义2.29),但要求A-闭包而不是A-闭合。即

T`Ω− 如果存在一个uB集a⊆R,使得:

1) L(A,

2) (A,R)中的每个集合都是uB,

3) 对于ZF c的所有强A-闭c.t.m.m和所有α,

如果Mα|=T,则Mα|=ξ。

由于对于任何uB集A和任何c.t.m,m强A-闭包意味着闭(见引理2.11),因此Ω ξ表示T`Ω− ▪。

现在假设T`Ω− 由uB集合a见证。我们希望看到存在一个uB集合B,使得所有B闭模型都是强a闭合的。

定理2.37给出了这一点,假设

普遍的Baire集具有标度性质,如上所述,当存在适当的类——许多伍丁枢机主教时,情况确实如此。即使没有这个假设可以证明这样的B是存在的,尽管有证据证明,但是它超出了本文的范围。这是一张草图。首先注意,M是强A闭c.t.m,当L(A,R)|=“m是强A闭的c.t.m”时,在L(A,R)中,A在集合X⊆R上满足以下谓词P(X):

α(M是ZFC∧

关于∧Mα|=T→ Mα|=ξ)。

现在我们将Woodin对Martin Steel定理的推广应用于 L(R)[8]中的标度和索洛维基定理(见[3])AD+,说明如下。

定理2.38。(ZF+DCR)如果AD+保持并且VL(P(R)),则

•点类∑2

1.

具有规模性质,

•每一个真正的∑1-句子都有一个∆~

2.

1.

一组real。

然后我们可以让B是∆~

2.

1.

(在L(A。请注意,通过(2) 上面,B是uB,根据定理2.27,它也是T`−Ω ▪。自从 L(A,R)|=AD+,B及其补码都有∑~

2.

1.以L(A,R)表示。

这些标度是uB(同样,通过上面的(2))。因此,在定理2.37中,我们可以找到C∈L(A,R),使得如果M是C闭合的C.t.M,则M是强 B闭合。因此,C见证了T`Ω ▪。

可以公式化一个性质,它大致捕捉a闭包和强a闭包之间的区别。我们将把这个性质称为A-完备性,尽管这个术语不是标准的。

定义2.39。设A是一组实数。让我们打电话给ZFC的c.t.m.m

A-完全如果对于每个强迫概念P∈M,实τ∈MP的每个名称,

并且每个p∈p:

(1) 如果对于相当多的M-一般G⊆P,P∈G意味着iG[τ]∈A,

则对于每个M-泛型G⊆P,P∈G意味着iG[τ]∈A。

(2) 如果对于相当多的M-一般G⊆P,P∈G意味着iG[τ]6∈A,

则对于每个M-一般G⊆P,P∈G意味着iG[τ]6∈A。

A-闭合和A-完备性的结合意味着强A-闭合。

引理2.40。设M是一个c.t.M,a是一个uB集。如果M都是A-闭合的

和A-完全,那么它是强A-闭合的。

证明:固定M和A,并假设M是A-闭合的和A-完备的。

允许σ={(τ,p)|τ∈M是实数的一个简单p-名,p∈p和p°

五、Pτ∈A

▪G}。

根据命题2.9,σ是一个属于M的P-名称。

我们声称,对于每一个M-泛型G⊆P,iG[σ]=M[G]≠A。

因此,假设G⊆P是M-一般滤波器。如果τ∈M是一个简单的P-名称

对于实和iG[τ]∈a,则对于一些p∈p,对于一组广义滤波器g,如果p∈g,则iG[τ]≠a。通过2.13,p°Vτ∈a

▪G

因此

iG[τ]∈iG[σ]。

现在假设iG[τ]∈iG[σ]。因此,对于某些p∈G,p°Vτ∈A

▪G

通过

2.13,M-一般滤波器g⊆P的集合使得P∈g和ig〔τ〕∈A是comeager。但由于M是A-完全的,对于所有M-泛型g⊆P,使得p∈g,ig[τ]∈A。特别地,ig[τ]≠A。

然而,强A-闭包并不意味着A-完全性。为了看到这一点,

注意,如果x是实数并且a={x},那么每个c.t.m.m都是强a闭的。但如果x是M上的Cohen泛型,则M不是A-完全的,

如果P是Cohen强迫,并且τ∈MP

是x的名称,则集合D={p∈p:p°τ6=x} 是P的稠密子集(尽管D6∈M!)。所以M上有一组P-一般滤波器,使得集合iG[τ]6=x,即iG[τ]6∈A。但对于某些M-一般G,iG[σ]=x∈A。

类似地,A-完全性并不意味着强A-闭包(它也是也不意味着A-闭合)。举个例子,让M满足ZFC+“0]不存在,”并且设A=0](即{n|n∈0]})。那么M显然不是A-闭合的,由于M[G]åA=A对于所有M-一般G⊆P,所有P。但是M是A-完全的。当看到这个,固定P,P和τ,并假设对于相当多的M-一般G,如果p∈G,则iG[τ]∈A。因此,X={n:∃p0≤p(p0°τ=n)}包含在A中,这反过来意味着所有M-泛型的iG[τ]∈A过滤包含P的G⊆P。

3Ω-猜想

定义3.1。

i) 一个句子是ΩT-可满足如果T2Ω ,即存在α和B使得VαB²T+。

ii)一组句子T是Ω-如果存在一个c.B.a.B和一个序数α,其中VαB²T。

iii)句子Ω如果T为0,则T一致Ω ,即,对于所有uB集合A⊆R满足定义2.29的1)和2),存在一个可数传递A-闭集M使得M²ZF C,并且存在使得Mα²T+Γ。

iv)一组句子T是Ω-一致,如果T0Ω ⊥, 其中Γ是任何矛盾,即,如果对于满足定义的1)和2)的所有A⊆R uB

2.29,存在一个c.t.m.a-闭的m²ZF c和α∈m使得Mα²T。

v) T是Ω-如果不是,则不一致Ω-一致的观察到如果AD+在L(R)中成立,并且L(R)中的每一组实数都是uB,然后每ΩT一致句与T一致。

事实3.2。以下内容相当于一组句子T:

i) T是Ω-一致的

ii)T 0Ω 对于一些。

iii)T 0Ω 对于所有的Γ∈T,即对于所有的ξ∈T,Γ为ΩT-一致。

证明:i)⇒ ii)琐碎。

  

ii)⇒ iii)在不失一般性的情况下,我们可以假设对于某个uB集A、 定义2.29的1)和2)成立。给定这样一个A,根据那里的假设存在一个A-闭的c.t.m.m和α∈måOn使得mα²t+。自从Mα²ψ对于所有ψ∈T,相同的M和α证明T 0Ω ψ

ψ∈T。

iii⇒ i) W.l.o.g.,我们可以假设定义2.29的1)和2)适用于某些情况

uB集合A。此外,我们还可以假设T6=∅。因此,设ξ∈T

假设存在一个A-闭的c.t.m.m和α∈m∈On使得Mα²T+。由于Mα²T+,则相同的M和α见证了T0Ω ⊥.

定理3.3(健全性)。([12])假定存在一个适当的类无法访问的基数。对于每一个T∈{ξ}∈Sent,T`Ω ξ表示T²Ω ▪。

证明:设A为uB集A见证T`Ω ▪。固定α和B,并假设

设λ>α是一个强不可及基数,使得a,B,T∈Vλ和Vλ|=“B是c.B.a.”。取X≺Vλ可数,其中a,B,T∈X ,M是X的传递坍缩,并且设B是B的传递坍缩。

由引理2.18M是A-闭的。因此,如果MαB|=T,然后MαB|=ξ。自从Vλ|=“VαB|=T”,通过元素性,M|=“MαB|=T“。因此,M|=“MαB|=“。因此,再次通过元素性,Vλ|=“VαB|=ξ”。因此,VαB|=ξ。

存在一类适当的不可访问基数的假设

在上面的定理中是不必要的。然而,没有这一点的证据,假设不再是基本的,它将使我们超越这篇论文。

因此,如果存在κ使得Vκ²ZF C+ξ,那么ZF C0Ω 。即 ξ为ΩZF C一致性。

全面性的另一个结果是,对于ZF CΩT可证明的句子不能通过V上的强迫而变假。

以下等价性可以在不使用定理3.3的情况下得到证明。

事实3.4。对于每个T⊆Sent,以下是等价的:

i) 对于所有ξ∈Sent,T`Ω ξ表示T²Ω ▪。

ii)T为Ω-可满足蕴涵T是Ω-一致的

证明:i)⇒ ii)假设T不是Ω-一致,即T`Ω ⊥. 通过假设,T²Ω ⊥ 对于所有c.B.a.B和所有α∈On,VαB2 T,因此T不是Ω-令人满意。

ii)⇒ i) 假设T2Ω ▪。设B和α使得VαB²T和VαB。

则TŞ{Ω-可满足的,因此Ω-一致的如果T`Ω 那么TŞ`Ω ▪。但是`Ω 一个矛盾。

因此,根据定理3.3和事实3.4,如果T是Ω-则T是可满足的Ω-一致的,即,如果存在α和B使得VαB²T,则对于每个uB集A上存在ZF c和α的A-闭c.t.m.m,使得Mα²T。

推论3.5(`的非紧性Ω). 假设L(R)|=AD

L(R)中的实数集是普遍的Baire。然后有这样一句话

ZF C`Ω 和所有S⊆ZF C有限,S 0Ω ▪。

证明:以定理1.12的句子为例。假设ZF C0Ω ▪。然后对于每个uB集A,存在一个A-闭的c.t.m.m和Mα²ZF C+。与定理1.12的证明中的论点相同,应用于Mα,我们得到了一个矛盾。

假设现在存在S有限,使得S`Ω ▪。然后通过Soundness,S²Ω 这产生了一个矛盾,如定理1.12的证明。

这个Ω-猜想说:如果存在一类合适的Woodin基数,则对于集合论的语言的每个句子,∅²Ω ⏴iff ∅`Ω ▪。

“如果”方向由“健全”给出。所以Ω-猜测只是的完整性Ω-逻辑,即如果∅²Ω ξ,然后为∅`Ω 对于每个ξ∈Sent。

引理3.6。以下内容相当:

i) 对于所有ξ∈Sent,∅²Ω ξ表示∅`Ω ▪。

ii)对于每一个r.e.集TŞ{ξ}⊆Sent,T²Ω ξ表示T`Ω ▪。

证明:i)⇒ ii)固定T r.e和ξ,使T²Ω ▪。设ξ*:=“T²Ω “。

引理1.9,∅²Ω ⏴*,因此通过i),∅`Ω ⏴*

因此,存在一个uB集合a使得对于每个A-闭合c.t.m.m|=ZF c,m²“∅²Ω ξ*”。然后使得所有α∈M,MᲓT²Ω “。由于M²ZF C,通过反射,M²“T²Ω “。

这表明A见证了T`Ω ▪。

这个Ω-猜想在强迫下是绝对的:

定理3.7。假设存在一个适当的Woodin基数类。

那么对于每一个c.B.a.B,

V B²Ω-猜想

iff

V²Ω-猜想

证明:根据定理1.8和2.35,对于每个c.B.a.B,∅²Ω 如果且仅当

如果V B²“∅²Ω “和∅`Ω 当且仅当V B²“∅`Ω “。因此,如果V B²Ω-推测,则V²“∅²Ω ξ“iff V B²”∅²Ω “iff V B²”∅`Ω “iff V²“∅`Ω “。反之亦然。

备注3.8。i) 假设L(R)²AD+,并且L(R)中的每一组实数为uB。如果T是r.e.和ZF C²“T²Ω “,然后T`Ω ξ,由∅见证。

ii)假设ZF C++存在一个强不可访问基数

一致的设ξ=“存在一个不可构造的实数”。然后ZF C 6`((ZF C²Ω ξ)→ (ZF C²)Ω ξ”)。

对于假设V²ZF C++“存在一个不可构造的实”+|=zfc)。然后ZF C²Ω ξ在V中成立。如果γ是序数且Vγ,则VγB²ξ,因为VγB包含V的所有实数。但是,由于ZF C加上强不可访问基数的存在是一致的,在V中存在ZF C++的一个模型“存在一个强不可达基数”+V=L。

该型号满足ZF C6|=Ω φ。

iii)假设ZF C是一致的。那么,对于任何句子,

ZF C 6`((ZF C²Ω ξ)→ (ZF C²)Ω ξ”)。

既然有ZF C+的车型,“就没有ZF C的车型”。

回想一下:

i) T是Ω-可满足当存在一个c.B.a.B和一个序数α

VαB²T。

ii)T为Ω-一致iff T 0Ω⊥.

以下重述了Ω-猜想

事实3.9。以下是每个T⊆Sent的等价项:

i) 对于所有ξ∈Sent,T²Ω ξ表示T`Ω

ii)T为Ω-一致意味着T是Ω-令人满意。

证明:i)⇒ii)假设T不是Ω-令人满意。那么对于所有c.B.a.B和所有α,VαB2 T。因此,对于所有B和所有α,如果VαB²T,则VαB平方Ş,为空。因此,T²Ω ⊥. 根据假设,T`Ω ⊥, 我们知道T是Ω-不一致的

ii)⇒i) 假设T0Ω ▪。则TŞ{,ξ}0Ω ξ,否则为T`Ω → ξ,然后T`Ω ξ∧ξ,给出了一个矛盾。因此,TŞ{Ω-一致的。

根据假设Ω-可满足的,存在B和α使得VαB²。因此T2Ω ▪。

最后,我们注意到Ω-猜测是正确的,正如Woodin已经表明,它适用于具有适当类别的精细结构模型Woodin基数。

参考文献

[1] P.Dehornoy,《关于连续性的进展》(d’apr’es Woodin),S’eminaire

Bourbaki 55`eme ann´ee,2002-2003,#915。

[2] 冯,马吉多,伍丁,《普遍的拜尔实集》。的集合论

Continuum(H.Judah,W.Just和W.H.Woodin,编辑),MSRI出版物,伯克利,

CA,1989年,第203-242页,施普林格出版社1992年。

[3] S.Jackson,AD的结构后果,集合论手册,M.Foreman,

A.Kanamori和M.Magidor编辑。

[4] T.Jech,《集合论》,第三版,斯普林格出版社,纽约,2003年。

[5] A.Kanamori,《更高的无限》。集合论中的大基数。

数理逻辑透视。施普林格Verlag。柏林,1994年。

[6] P.B.拉森,《静止的塔》。W.Hugh Woodin的课程笔记。大学系列讲座,第32卷。美国数学学会,普罗维登斯,RI。2004

[7] P.B.Larson,强迫确定性模型,集合论手册,M.Foreman,A.Kanamori和M.Magidor编辑。

[8] D.A.Martin,J.R.Steel,L(R)中尺度的范围,Cabal研讨会79-81,讲座

数学笔记。1019,施普林格,柏林,1983,86-96。

[9] Y.N.Moschovakis,描述集理论,逻辑学研究和

数学第100卷。北荷兰出版公司。阿姆斯特丹,纽约,

牛津,1980年。

[10] S.Shelah,W.H.Woodin,大基数意味着

reals是勒贝格可以测量的。以色列数学杂志。第70卷,第3期(1990年),381-394。

[11] J.Steel,Woodin在鼠标集上的一个定理。预打印。2004年7月14日。

[12] Woodin,决定性公理、强迫公理和非平稳性

完美的DeGruyter逻辑及其应用系列,1999年第1卷。

[13] W.H.Woodin,连续统假说。逻辑学术讨论会论文集,

2000年。出现。

[14] W.H.WoodinΩ-猜想复杂性方面(Kaikoura,2000年)。DeGruyter

《逻辑及其应用系列》,第4卷,第155-169页。DeGruyter,柏林,2001年。

[15] W.H.Woodin,《连续统假说》,I.注意事项。数学Soc.,48(6):567-5762001。

[16] W.H.Woodin,连续统假说,第二章。Amer通知。数学Soc.,48(7):681-

6902001;49(1):462002。

[17] 伍丁,罗素之后的集合论;返回伊甸园的旅程。一百

《罗素悖论的岁月》,戈德哈德·林克主编。逻辑和中的DeGruyter级数

其申请,第6卷,第29-48页。

材料回收中心`

atica(CRM)。公寓50,E-08193

Bellaterra(巴塞罗那),西班牙。

ICREA(机构)'

o加泰罗尼亚研究院(Estudios Avanzados)

和L'

逻辑,历史'

时间与词学'

encia。

巴塞罗那大学。Baldiri Reixac,s/n。08028巴塞罗那,

西班牙bagaria@ub.edu

L部门'

逻辑,历史'

时间与词学'

encia。

巴塞罗那大学。Baldiri Reixac,s/n。08028巴塞罗那,

西班牙ncastema@mat.ub.edu

Matem研究中心'

atica(CRM)。E-08193,50号公寓

Bellaterra(巴塞罗那),西班牙。

数学与统计系。迈阿密大学。

美国俄亥俄州牛津市,邮编45056。larsonpb@muohio.edu  

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

团宠:有五个不熟悉的哥哥怎么办? 连载中
团宠:有五个不熟悉的哥哥怎么办?
悦雪风吟
作为一个身体不好的小孩子,爸妈为了让她养好身体,带她回到了山上的奶奶家,与奶奶父母一起生活,彼时大哥已经完全有能力接管公司,父母便安心照顾她......
1.2万字3个月前
永远停驻于那个夏天吧 连载中
永远停驻于那个夏天吧
4000時
请关注四千时谢谢喵【自留oc向】第一次在话本写东西!这是纯oc向的小说てす!一起去鬼屋探险吧!杂乱剧情注意‼️多结局注意❗️男频剧情️,女频......
0.7万字3个月前
梦的结局I 连载中
梦的结局I
紫苜花
“我以天下为棋,赌我胜它半子。”“你说,我们还有见面的机会吗?”“我好想你,我错了……”“师尊你何时归来。”“主上,你不在的日子,总归是无趣......
1.9万字3个月前
涧春 连载中
涧春
五香瓜子仁
[已签约]一场让所有人匪夷所思的穿书,沐季珠以为的穿书,其实是夜渊一千两百年来的等待。
15.5万字3个月前
重生?迪恩你个老六! 连载中
重生?迪恩你个老六!
罪恶中介阎君
机设,男迪,非拟人动画迪预警!迪恩重生后开始“摆烂”,剧情又会按照怎样的方向发展呢?作者雷迪息!!!
3.0万字2个月前
不是向阳花 连载中
不是向阳花
听音不见仙
女主:薛茗
0.7万字4周前