数学联邦政治世界观
超小超大

0=1莱茵哈特基数(数学构造)

0=1莱茵哈特基数构造:x>0 当x≥1,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1/x+lnx-1=1/x+1nx,因为x≥1,则lnx≥0,1/x>0,所以f’(x)>0, 所以f(x)在[1,+oo)上递增, 则f(x) ≥f(1)=0-1+1=0,又(x-1)≥0 所以(x-1)f(x)≥0.当1>x>0,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1x+lnx-1=1/x

在集合论中0=1的意思

是不一致证明的典范例子。

根据哥德尔定理,初等算术系统可能是不一致的,倘若初等算术不一致,则你能在其中找到一个有限长度的0=1的证明。

在一致性强度的证明当中通常都是以证明不存在0=1的证明为主。

一类大基数假设被冠以0=1类则在于这类假设会导致存在一个已被发现的0=1的证明,注意,是已被发现。

根据哥德尔定理,一致性强度越强,并不意味着就越安全越可靠,反倒是越危险越接近不一致,比如远比初等算术要强的ZFC就远比初等算术更可能不一致,而那些更强的大基数假设,只能说是尚未发现0=1的证明。

所以,对于一个非标准的算术模型中的见证0=1的非标准自然数,你也可以称这样的自然数为0=1类基数。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

青山不知语(红线) 连载中
青山不知语(红线)
鱼头煲鸡汤
原以为自己是没有父亲的,结果等自己母亲死了才知道母亲谈了一个异世界的人,被接回去的时候才知道,自己还有一个姐姐,但这个姐姐很不喜欢她。可以说......
3.5万字12个月前
成为第二人格 连载中
成为第二人格
风起雾散尽
你是谁,谁是我你听得到吧,隐藏在我身体里的怪物我们本就是一个人,与我融为一体吧【无co】所有人都是主角的一缕灵魂
0.9万字9个月前
寻秘之秋 连载中
寻秘之秋
轻吟吟吟
流光溢彩的少年不疾不徐撞入她的眼眸,无数问题在她的心中生根发芽。“你好知秋,我是旬阳笙。”“这是我们第23次的重逢。”而她不知道的是,少年的......
0.2万字9个月前
捉住你的小尾巴 连载中
捉住你的小尾巴
淤鱼与欲
“重来一世,我会为你叛神……”迟安无奈苦笑道,醉卧在宫苑中的桃花树下。一朝间,迟安回到年少却什么都不记得,十三出头的迟安在马停街前接住了坠楼......
1.3万字7个月前
快穿之他们都心怀不轨 连载中
快穿之他们都心怀不轨
小小少年的你
【无系统+all女主+钓系美人万人迷+女主非圣母+修罗场预警+无雌竞+男全C+“原配”纯纯工具人+感情线居多+不喜勿入】(第一个世界略带古风......
8.8万字5个月前
沃兰德大陆:列强之争 连载中
沃兰德大陆:列强之争
霍尔德
沃兰德大陆,八位强国屹立在这片广袤的土地之上,在3000余年的历史中,和平显然不是主旋律,邪恶的入侵战争、被肢解后的统一战争,亦或者是数个国......
2.7万字4个月前