数学联邦政治世界观
超小超大

0=1莱茵哈特基数(数学构造)

0=1莱茵哈特基数构造:x>0 当x≥1,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1/x+lnx-1=1/x+1nx,因为x≥1,则lnx≥0,1/x>0,所以f’(x)>0, 所以f(x)在[1,+oo)上递增, 则f(x) ≥f(1)=0-1+1=0,又(x-1)≥0 所以(x-1)f(x)≥0.当1>x>0,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1x+lnx-1=1/x

在集合论中0=1的意思

是不一致证明的典范例子。

根据哥德尔定理,初等算术系统可能是不一致的,倘若初等算术不一致,则你能在其中找到一个有限长度的0=1的证明。

在一致性强度的证明当中通常都是以证明不存在0=1的证明为主。

一类大基数假设被冠以0=1类则在于这类假设会导致存在一个已被发现的0=1的证明,注意,是已被发现。

根据哥德尔定理,一致性强度越强,并不意味着就越安全越可靠,反倒是越危险越接近不一致,比如远比初等算术要强的ZFC就远比初等算术更可能不一致,而那些更强的大基数假设,只能说是尚未发现0=1的证明。

所以,对于一个非标准的算术模型中的见证0=1的非标准自然数,你也可以称这样的自然数为0=1类基数。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

涧春 连载中
涧春
五香瓜子仁
[已签约]一场让所有人匪夷所思的穿书,沐季珠以为的穿书,其实是夜渊一千两百年来的等待。
15.5万字11个月前
数学联邦政治世界观 连载中
数学联邦政治世界观
拓崇
原创数学类小说,以构造圈数学量级为发展目标。
3524.8万字10个月前
清依传 连载中
清依传
乔忆娇
原来,有一个人,从不在身边,心里却总是惦念!有一段情,隔着天涯,却倍感温暖!有一种承诺,不需说一生一世,可你知道此生此世,你注定与他相随……......
2.6万字10个月前
蛇莓穿越初中之穿越之旅 连载中
蛇莓穿越初中之穿越之旅
屑榵榵
蛇莓穿越到了初三3班成为学生,从27章开始,蛇莓的名字改为了白珠樱,第29章开始模仿怪盗基德不更新了
115.9万字5个月前
我的土匪夫君 连载中
我的土匪夫君
游客1588752208349
宋家独女宋小宝,新婚当天,发现新郎与自家堂妹私会,一气之下,直接逃婚,却没想到逃婚逃到土匪窝,也是服了,刚好土匪老大正在对着上天祈求上天赐给......
0.8万字5个月前
快穿之他们都心怀不轨 连载中
快穿之他们都心怀不轨
小小少年的你
【无系统+all女主+钓系美人万人迷+女主非圣母+修罗场预警+无雌竞+男全C+“原配”纯纯工具人+感情线居多+不喜勿入】(第一个世界略带古风......
8.8万字4个月前