数学联邦政治世界观
超小超大

0=1莱茵哈特基数(数学构造)

0=1莱茵哈特基数构造:x>0 当x≥1,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1/x+lnx-1=1/x+1nx,因为x≥1,则lnx≥0,1/x>0,所以f’(x)>0, 所以f(x)在[1,+oo)上递增, 则f(x) ≥f(1)=0-1+1=0,又(x-1)≥0 所以(x-1)f(x)≥0.当1>x>0,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1x+lnx-1=1/x

在集合论中0=1的意思

是不一致证明的典范例子。

根据哥德尔定理,初等算术系统可能是不一致的,倘若初等算术不一致,则你能在其中找到一个有限长度的0=1的证明。

在一致性强度的证明当中通常都是以证明不存在0=1的证明为主。

一类大基数假设被冠以0=1类则在于这类假设会导致存在一个已被发现的0=1的证明,注意,是已被发现。

根据哥德尔定理,一致性强度越强,并不意味着就越安全越可靠,反倒是越危险越接近不一致,比如远比初等算术要强的ZFC就远比初等算术更可能不一致,而那些更强的大基数假设,只能说是尚未发现0=1的证明。

所以,对于一个非标准的算术模型中的见证0=1的非标准自然数,你也可以称这样的自然数为0=1类基数。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

我在泰娱哦! 连载中
我在泰娱哦!
Dy蒂伍艾
近年来,我迷上了泰娱,所以有这样的幻想也不为过。
39.8万字12个月前
六芒星之旅 连载中
六芒星之旅
白井空慕
即将成为下一位新神的白玖,在历练时经历的种种事情与磨难,最后迎来的会是什么?是要坚持自己的决定与旧神卡维斯特抗争还是归顺于他,成为傀儡?
2.1万字1年前
遇到你们,不再空虚 连载中
遇到你们,不再空虚
蓝猫爱吃小无鱼
在我将要“死亡”之时,是你们让我让我获得生的希望……真的吗?……(啊啊啊啊啊写的太烂了!!!)
0.8万字10个月前
恋祺曰记 连载中
恋祺曰记
♡̶҉余悸꧔ꦿ℘_64666586542
马嘉祺与马芙
0.8万字9个月前
柑橘味的盛夏狂欢 连载中
柑橘味的盛夏狂欢
褒简
青春校园,温馨治愈小甜文。主要是写童新和纪竹两位女孩子的懵懂爱情故事。冷漠傲娇的纪竹能遇上他的小太阳童新吗?
1.0万字7个月前
素爱病态救赎 连载中
素爱病态救赎
汤华奥
梦砰!是我的!一1我果然是一个污秽不堪的人。但是,她也是。就如我所预料的那样,爱音得到了那个机会。我看着手机,屏幕上闪烁着那封邮件的标题,刺......
2.9万字6个月前