数学联邦政治世界观
超小超大

0=1莱茵哈特基数(数学构造)

0=1莱茵哈特基数构造:x>0 当x≥1,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1/x+lnx-1=1/x+1nx,因为x≥1,则lnx≥0,1/x>0,所以f’(x)>0, 所以f(x)在[1,+oo)上递增, 则f(x) ≥f(1)=0-1+1=0,又(x-1)≥0 所以(x-1)f(x)≥0.当1>x>0,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1x+lnx-1=1/x

在集合论中0=1的意思

是不一致证明的典范例子。

根据哥德尔定理,初等算术系统可能是不一致的,倘若初等算术不一致,则你能在其中找到一个有限长度的0=1的证明。

在一致性强度的证明当中通常都是以证明不存在0=1的证明为主。

一类大基数假设被冠以0=1类则在于这类假设会导致存在一个已被发现的0=1的证明,注意,是已被发现。

根据哥德尔定理,一致性强度越强,并不意味着就越安全越可靠,反倒是越危险越接近不一致,比如远比初等算术要强的ZFC就远比初等算术更可能不一致,而那些更强的大基数假设,只能说是尚未发现0=1的证明。

所以,对于一个非标准的算术模型中的见证0=1的非标准自然数,你也可以称这样的自然数为0=1类基数。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

多重宇宙:离婚后,为她一夜白头 连载中
多重宇宙:离婚后,为她一夜白头
笨笨笨小妙
跟心心念念的男人结婚五年后...我心灰意冷,决定离婚。却在一场车祸后...窥探到另一个时空的我和他...原来,那个不说爱的男人,在另一个时空......
28.2万字4个月前
不是向阳花 连载中
不是向阳花
听音不见仙
女主:薛茗
0.7万字3个月前
琴落玉湖 连载中
琴落玉湖
烟霏雨
这是一个民族的崛起与消亡史,尽管今天的人几乎不曾听过它的故事,但那两个女人的勇敢,同雪山、阳光一样神奇不朽
1.3万字3个月前
沐心归尘 连载中
沐心归尘
岑夏仲月
死去多年的混沌时代前最强者沐汐突然重生为人,并遇到无心的尘归,二人一见钟情,那么接下来会发生什么呢?
8.8万字3个月前
噩梦苏醒时分 连载中
噩梦苏醒时分
157***351_2137603610
怪物!怪物!男孩不住的哭喊着,然而,没有一个人搭理他。突然,黑夜里,一双黄色的眼睛转了过来,一股劲风携杂着血腥味像男孩扑去。
3.8万字2个月前
快穿:开局打男主 连载中
快穿:开局打男主
独孤咸鱼
朱颜第一时间看了回去,注意到那名头顶冒绿光的少年时,眼睛不由得一亮,“这等高级的颜色,阁下定是贵族!”女主:“哇,他跳辣舞那么美,我爱上他了......
1.9万字1个月前