数学联邦政治世界观
超小超大

0=1莱茵哈特基数(数学构造)

0=1莱茵哈特基数构造:x>0 当x≥1,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1/x+lnx-1=1/x+1nx,因为x≥1,则lnx≥0,1/x>0,所以f’(x)>0, 所以f(x)在[1,+oo)上递增, 则f(x) ≥f(1)=0-1+1=0,又(x-1)≥0 所以(x-1)f(x)≥0.当1>x>0,f(x)=(x+1)lnx-x+1, f’(x)=(x+1)*1x+lnx-1=1/x

在集合论中0=1的意思

是不一致证明的典范例子。

根据哥德尔定理,初等算术系统可能是不一致的,倘若初等算术不一致,则你能在其中找到一个有限长度的0=1的证明。

在一致性强度的证明当中通常都是以证明不存在0=1的证明为主。

一类大基数假设被冠以0=1类则在于这类假设会导致存在一个已被发现的0=1的证明,注意,是已被发现。

根据哥德尔定理,一致性强度越强,并不意味着就越安全越可靠,反倒是越危险越接近不一致,比如远比初等算术要强的ZFC就远比初等算术更可能不一致,而那些更强的大基数假设,只能说是尚未发现0=1的证明。

所以,对于一个非标准的算术模型中的见证0=1的非标准自然数,你也可以称这样的自然数为0=1类基数。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

来自遥远云境国度的星月神话 连载中
来自遥远云境国度的星月神话
糖裕
遵守世界法的萝甜甜掌管星星法则,一直爱护着可爱的子民。从西界到东海的旅途由此展开。与一群可爱的同胞,拥有友谊,发现爱情,守护亲情。
0.5万字1年前
快穿之恋爱脑男主养成记 连载中
快穿之恋爱脑男主养成记
177***305_2182843138
萧晓:男德班创始人,养成经验源于男人,用于男人。致力于养成恋爱脑男人。
0.3万字10个月前
神修大陆 连载中
神修大陆
唐朝汐
在这个神修的大陆,法术强者为王的大陆上,有无数宗门和学院,可是有这么一个宗门他们以蝶为主,以音为辅,以扇为攻,宗门里的亲生血脉者刚会有一种特......
8.0万字10个月前
他呀!万人迷而不自知 连载中
他呀!万人迷而不自知
小鹿叮咚
(原创该书已签约)快穿局萌新言之害怕极了,为什么每个世界的主角都不按套路出牌啊!呜呜呜...
1.3万字9个月前
万人嫌获得满级金手指后 连载中
万人嫌获得满级金手指后
很讨厌上学
许念珠苦了半辈子才得知是因为被人夺走气运,且看她获得金手指后爽翻天的日常。
2.1万字7个月前
当时间和暗物质交错 连载中
当时间和暗物质交错
QC烔
叶罗丽仙境中,时间和暗物质的关系有微妙的联结。
0.2万字5个月前