数学联邦政治世界观
超小超大

不完全性定理

第一不完全性定理的内容是:“无论数学无矛盾地如何形式化,都存在着既不能证明也不能反证的命题。”

换句话说,不可能写出数学所需的所有公理。

既然这个定理被特意冠之以第一,那么也存在成为第二不完全性定理的东西。

第二不完备性定理是“任何形式的体系都不能证明其体系自身并不矛盾”。

这意味着,要显示某一形式体系并不矛盾,作为元逻辑,需要比该体系更有力的体系。

第一个在连续统问题上取得进展的是哥德尔。

受到罗素类型论思想的启发,哥德尔为集合论的公理系统ZFC构造了一个模型L,L的元素称为可构成集。

可构成集模型是一个分层的结构,其中每一层都是由前面层谱的可定义子集得到的。

哥德尔证明除了集合论已有的公理都在L中成立外,“可构成公理(V=L)”,即所有集合都是可构成的,在L中也成立,而这一公理蕴涵连续统假设,因此CH也在L中成立。

用数理逻辑的术语说,哥德尔的结果表明:如果ZFC是一致的,则ZFC+CH也是一致的。

因此,我们不能期望从ZFC证明CH是假的。

哥德尔构造集合论模型的方法是从全类V出发,L是对V的限制。

L包含了所有的序数(因此它是一个真类),它在“高度”上与V是一致的,只是它比V显得更“细”。

现在一般把包含所有序数的传递类称为“内模型”。

Ⅴ和L高度一致,宽度不够

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

品质少女:情绪精灵 连载中
品质少女:情绪精灵
蕴笺甯
自创的魔法少女的故事(◍•ᴗ•◍)
2.8万字12个月前
重生之顶尖修真者 连载中
重生之顶尖修真者
一夜长雨
重生女x狼狗男甄秋重生到修真世界,在这个过程中与陌桦相遇,二人从互相试探到真心相待,甄秋一边在修真世界努力升级,一边应对各种阴谋诡计,最终成......
1.3万字10个月前
救世魔女 连载中
救世魔女
喵啪丝
白毛红瞳的少女,在西幻世界当巫师,无限流。渐渐消失的大陆,濒临毁灭的诸天万界。救世魔女,就是魔女。【随缘更】
54.8万字9个月前
失去了,才去爱(复仇记) 连载中
失去了,才去爱(复仇记)
TK01234
(我叫周余,我的爸爸妈妈并不喜欢我,可却把我生了下来,我有一个妹妹和哥哥,哥哥叫周明。妹妹是养女,哥哥和爸爸妈妈们都很喜欢他,妹妹叫周甜。)......
1.9万字8个月前
望春台 连载中
望春台
松与杉与花与树
世界已经变了世界还将继续变化你说的故事也许是真的感谢观看我写的故事,阅读过程中如有不足,请多多指教感谢观看
0.4万字5个月前
楼影集 连载中
楼影集
南枝絮柳
蝉鸣、霜、废纸般的影子,铺就压抑的底色;锈色月亮、暗红血浆与肋骨裂纹,将个体的溃烂层层剖开。当荆棘穿透胸腔,你睫毛上的雪与心脏褶皱里的藤蔓,......
35.8万字4个月前