数学联邦政治世界观
超小超大

不完全性定理

第一不完全性定理的内容是:“无论数学无矛盾地如何形式化,都存在着既不能证明也不能反证的命题。”

换句话说,不可能写出数学所需的所有公理。

既然这个定理被特意冠之以第一,那么也存在成为第二不完全性定理的东西。

第二不完备性定理是“任何形式的体系都不能证明其体系自身并不矛盾”。

这意味着,要显示某一形式体系并不矛盾,作为元逻辑,需要比该体系更有力的体系。

第一个在连续统问题上取得进展的是哥德尔。

受到罗素类型论思想的启发,哥德尔为集合论的公理系统ZFC构造了一个模型L,L的元素称为可构成集。

可构成集模型是一个分层的结构,其中每一层都是由前面层谱的可定义子集得到的。

哥德尔证明除了集合论已有的公理都在L中成立外,“可构成公理(V=L)”,即所有集合都是可构成的,在L中也成立,而这一公理蕴涵连续统假设,因此CH也在L中成立。

用数理逻辑的术语说,哥德尔的结果表明:如果ZFC是一致的,则ZFC+CH也是一致的。

因此,我们不能期望从ZFC证明CH是假的。

哥德尔构造集合论模型的方法是从全类V出发,L是对V的限制。

L包含了所有的序数(因此它是一个真类),它在“高度”上与V是一致的,只是它比V显得更“细”。

现在一般把包含所有序数的传递类称为“内模型”。

Ⅴ和L高度一致,宽度不够

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

你好,大妖 连载中
你好,大妖
这条小鱼在乎捏
我是一个半人半妖的妖怪我出生就被诅咒过所以我父母就不要我了丢给了我师傅白泽但是师傅说以后会一只大妖叫乘黄的非常爱我爱我?为什么也要丢下我?
0.8万字1年前
无限流:疯批美人她十恶不赦 连载中
无限流:疯批美人她十恶不赦
菱意笙枫
  【无限流/双女主/双强/金手指/微悬疑】池漾意外进入了无限流副本当中,开局不但获得了金手指,还被副本当中的队友抢着要,为了拉她入伙,还额......
7.7万字11个月前
穿成反派大小姐后我躺赢了 连载中
穿成反派大小姐后我躺赢了
空花亦落果
常年排行垫底的系统菁菁被前辈扔到了反派大师姐身边,任务竞是阻止她崩坏位面!!菁菁欲死无泪,战战兢兢的跟着这个暴躁大师姐走过一个又一个位面。本......
1.7万字10个月前
晨曦到日落 连载中
晨曦到日落
青狮龙啸
这是一个弱肉强食的时代,古蚺一族最后的血脉染晨曦与修士的最后一代迟夕洛,在狱中成长,又在缘分的红线下相遇在了一起,成为了朋友,但小白在牢中备......
1.5万字6个月前
唯一的知情人 连载中
唯一的知情人
仿古雀鸟
陈小梦以月冰的身份,诞生了这个充满灵力的庸俗设定岛屿中,能力规则都懂,唯一对自己的身份抱有谜题,从碎碎念到默不作声(包含搞笑成分并且前几章,......
7.5万字6个月前
悚心笼中 连载中
悚心笼中
暖暖的小太阳nndxty
为何将那明艳动人的蝴蝶囚于牢笼,任其璀璨光芒渐渐消弭。她本是世间鲜有的清醒者,却偏似那飞蛾扑火,自甘沉沦,如众人一般,在这混沌尘世中迷失了方......
0.4万字5个月前