数学联邦政治世界观
超小超大

peano公理(皮亚诺公理)

公理1:0是一个自然数

公理2:如果n是自然数,那么n++也是一个自然数

(n++代表n的后继,有时候也表示为n+)

定义1:我们定义1为0++(也就是0的后继),2:=1++,3:=2++(x:=y代表说x被定义为y)

定义2:0不是任何自然数的后继,也就是说对于任意的自然数n,n++≠=0

公理3:不同的自然数有不同的后继,也就是若自然数n,mn≠m,那么n++≠m++

换句话说,如果n++=m++,那么n=m

公理4:(数学归纳法)如果P(n)是一个和n的有关的命题,如果P(0)是对的,且假设P(n)是对的时候,P(n++)也是对的,那么我们就说对于任意自然数n,P(n)是对的

加法

定义3 如果m,n为自然数,则我们定义0+m:=m且若我们定义了(n+m),则我们定义(n++)+m为:(n++)+m:=(n+m)++

定理5:加法具有交换性,也就是说对于自然数n,m,n+m=m+n

定理6:加法具有结合律,也就是对于自然数a,b,c,(a+b)+c=a+(b+c)

定理7:加法有消除率,也就是对于自然数a,b,c,a+b=b+c,则b=c

定义4:如果一个正整数被称为正,当且仅当他不等于0

定义5:若n,m是自然数,则我们称n大于等于m,或者n≥m当且仅当对于某个自然数a,n=m+a

定理8:(自然数中对于顺序的定义)

1,自反性:a≥a

2,传递性a≥b,b≥c则a≥c

3,反对称:若a≥b,b≥a则a=b

4,加法保留顺序:a≥b当且仅当a+c≥b+c

5,a<b当且仅当a++≤b

6,a<b当且仅当对于自然数db=a+d

定理9:序的三分:如果a,b为自然数,那么以下三个命题中只有一个是正确的:a<b,a=b,a>b

定理10:第二数学归纳法:若m0为一个自然数,且P(m)为与自然数m有关的的命题,假设对于m≥m0

我们有以下的性质:假设对于自然数m',满足m≤m′

乘法

定义6:m是自然数,我们定义0乘m为0×m:=0,现在假设我们定义了n乘以m,此时我们定义n++乘以m为(n++)×m:=(n×m)+m

定理9:乘法具有交换律;如果n,m是自然数,那么n×m=m×n

定理10:对于自然数n,m,若n×m=0当且仅当n,m中至少有一个是0,

定理11:乘法的分配率:对于自然数

a,b,c,a(b+c)=ab+ac,(b+c)a=ba+ca

定理12:乘法的结合律:对于自然数

a,b,c,(a×b)×c=a×(b×c)

定理13:乘法保留顺序:如果a,b是自然数,且a<b,且c是正数,那么ac<bc

定理14:乘法消去律:对于a,b,c为自然数,且ac=bc,而且c不是0,那么a=b

定理15:欧拉算法:对于自然数n,正整数m,则存在自然数m,r使得0≤r<q,n=mq+r

定理16:自然数的幂运算:对于自然数m,我们定义m的0次方为,且m0:=1,且00:=1接下来,如果mn已经被定义,那么:mn++:=mn×m

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

相遇和你 连载中
相遇和你
樱三
李云天为天玄宗立下了汗马功劳,原本是天玄宗宗主继承人,却没想到被宗门弟子嫉妒惨遭暗算,迫不得已打开了异世界的通道,将自己元神分离进入了这个异......
4.2万字2个月前
异世中原 连载中
异世中原
上官青鹤
异世界日记
0.2万字2个月前
青山不知语(红线) 连载中
青山不知语(红线)
鱼头煲鸡汤
原以为自己是没有父亲的,结果等自己母亲死了才知道母亲谈了一个异世界的人,被接回去的时候才知道,自己还有一个姐姐,但这个姐姐很不喜欢她。可以说......
3.5万字1个月前
末世语阳 连载中
末世语阳
不知名刀刀
女主角酚易:一个坚强、聪明、有领导力的女性,末世前是医生。男主角白莱:一个勇敢、机智、有责任感的男性,末世前是军人。在共同的战斗和生存中,酚......
2.0万字1个月前
玄界:生命与自然双灵能,在玄幻星际杀疯了! 连载中
玄界:生命与自然双灵能,在玄幻星际杀疯了!
俺是两点半老师哩
『科技与灵能共存世界观,讲述的是女主两点半在玄幻世界经历各种各样有趣的事,结识许多的朋友,大女主,可以嗑cp,没有男朋友设定√,但是有很多男......
5.6万字1个月前
最后让我在看ta 连载中
最后让我在看ta
南屿崽
我是林川,永远爱着别人31的林川的想问29岁的林川,值得吗?我就是我,谁都替代不了四季的轮回,我们还会在见面的最后在看ta,看的是她还是他记......
10.8万字4周前