数学联邦政治世界观
超小超大

peano公理(皮亚诺公理)

公理1:0是一个自然数

公理2:如果n是自然数,那么n++也是一个自然数

(n++代表n的后继,有时候也表示为n+)

定义1:我们定义1为0++(也就是0的后继),2:=1++,3:=2++(x:=y代表说x被定义为y)

定义2:0不是任何自然数的后继,也就是说对于任意的自然数n,n++≠=0

公理3:不同的自然数有不同的后继,也就是若自然数n,mn≠m,那么n++≠m++

换句话说,如果n++=m++,那么n=m

公理4:(数学归纳法)如果P(n)是一个和n的有关的命题,如果P(0)是对的,且假设P(n)是对的时候,P(n++)也是对的,那么我们就说对于任意自然数n,P(n)是对的

加法

定义3 如果m,n为自然数,则我们定义0+m:=m且若我们定义了(n+m),则我们定义(n++)+m为:(n++)+m:=(n+m)++

定理5:加法具有交换性,也就是说对于自然数n,m,n+m=m+n

定理6:加法具有结合律,也就是对于自然数a,b,c,(a+b)+c=a+(b+c)

定理7:加法有消除率,也就是对于自然数a,b,c,a+b=b+c,则b=c

定义4:如果一个正整数被称为正,当且仅当他不等于0

定义5:若n,m是自然数,则我们称n大于等于m,或者n≥m当且仅当对于某个自然数a,n=m+a

定理8:(自然数中对于顺序的定义)

1,自反性:a≥a

2,传递性a≥b,b≥c则a≥c

3,反对称:若a≥b,b≥a则a=b

4,加法保留顺序:a≥b当且仅当a+c≥b+c

5,a<b当且仅当a++≤b

6,a<b当且仅当对于自然数db=a+d

定理9:序的三分:如果a,b为自然数,那么以下三个命题中只有一个是正确的:a<b,a=b,a>b

定理10:第二数学归纳法:若m0为一个自然数,且P(m)为与自然数m有关的的命题,假设对于m≥m0

我们有以下的性质:假设对于自然数m',满足m≤m′

乘法

定义6:m是自然数,我们定义0乘m为0×m:=0,现在假设我们定义了n乘以m,此时我们定义n++乘以m为(n++)×m:=(n×m)+m

定理9:乘法具有交换律;如果n,m是自然数,那么n×m=m×n

定理10:对于自然数n,m,若n×m=0当且仅当n,m中至少有一个是0,

定理11:乘法的分配率:对于自然数

a,b,c,a(b+c)=ab+ac,(b+c)a=ba+ca

定理12:乘法的结合律:对于自然数

a,b,c,(a×b)×c=a×(b×c)

定理13:乘法保留顺序:如果a,b是自然数,且a<b,且c是正数,那么ac<bc

定理14:乘法消去律:对于a,b,c为自然数,且ac=bc,而且c不是0,那么a=b

定理15:欧拉算法:对于自然数n,正整数m,则存在自然数m,r使得0≤r<q,n=mq+r

定理16:自然数的幂运算:对于自然数m,我们定义m的0次方为,且m0:=1,且00:=1接下来,如果mn已经被定义,那么:mn++:=mn×m

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

丧尸界里当军师 连载中
丧尸界里当军师
万紫万红
1V1四对cp凌芊芊从小与他人不同一次她跟随老奶奶进入另一个异空间。当起了界丧尸家族的国师。开启国师之路,慢慢的自己的身世之谜浮出水面知晓自......
23.6万字5个月前
星空下的守望者 连载中
星空下的守望者
橙子🍊🍊_754698565
科技的发展使人类成功走向宇宙,星际时代就此拉开帷幕。当人类的星际移民进行的如火如荼时,来自宇宙深处的神秘敌人却悄然降临……一个从边缘星球走出......
5.0万字3个月前
不求功名,只求她平安 连载中
不求功名,只求她平安
清梦蝶灵
秋风袭卷大地,洛秋明复约而来,世界已是物是人非,古龙复苏,名为“神”的生物降临人间,百年未有之大变局,斩神与龙的“比罗米修斯”之剑终将落下。
3.7万字2个月前
时空碎片(上) 连载中
时空碎片(上)
Y.榆欢
0.6万字1个月前
巫女日記 连载中
巫女日記
Sumphote
架空世界,主角安以琪·苏·图兰,一半萨摩一半库兰,讲述其上大学后发生的一系列事情,不断成长,渐渐明白自己意欲何为,想要坚持父母那个梦想——建......
9.0万字1个月前
凤隐山河 连载中
凤隐山河
二酱紫
《凤隐山河》讲述现代法医林锦书穿越架空王朝。凭借刑侦技术破解《璇玑录》死局的故事。当她腕间赤凤纹引发时空裂隙,竟发现镇北王世子谢珩的“尸体”......
2.7万字1周前