数学联邦政治世界观
超小超大

特殊篇章(数学解释)十六

可数饱和模型=可数广集模型+齐次模型

定理: 𝕬 是可数完备理论 T 的可数饱和模型,当且仅当, 𝕬 是 T 的可数广集模型与齐次模型。

证明:充分性。假设 𝕬 是可数完备理论 T 的可数饱和模型,首先证明可数饱和模型是可数广集模型。令 𝕭 是 T 的模型,求存在 𝕭 到 A 的初等嵌入映射。令 𝕭={bᵢ}ᵢ∈ω ,定义 Γ(x)={ψ(x):𝕭 ⊨ ψ(b₀)} ,由于 𝕬 是可数饱和模型,因此 𝕬 实现 Γ(x) ,不妨设 α₀ 在 𝕬 实现 Γ(x) ,注意此时 (𝕬,α₀)≡(𝕭,b₀) ;继续定义 Γ(x,y)={ψ(x,y):𝕭 ⊨ ψ(b₀,b₁)} ,由于 𝕬 是可数饱和模型,因此 (𝕬,α₀) 实现 Γ(α₀,y) ,不妨设 α₁ 在 (𝕬,α₀) 实现 Γ(α₀,y) ,注意此时 (𝕬,α₀,α₁)≡(𝕭,b₀,b₁) 。递归进行上述过程,可得 (𝕬,αᵢ)ᵢ ∈ω≡(𝕭,bᵢ)ᵢ∈ω ,这就是所求的初等嵌入映射,因此可数饱和模型必然是可数广集模型。

下面证明可数饱和模型是齐次模型。令 f 是从 𝕬 到 𝕬 的部分自同构,设 dom(f)={αᵢ}ᵢ ≤ ₙ ,那么 (𝕬,αᵢ)ᵢ ≤ ₙ ≡(𝕬,f(αᵢ))ᵢ ≤ ₙ ,任选 c∈A−dom(f) ,定义 Γ(x)={ψ(x,α→):𝕬 ⊨ ψ (c,α→)} ,下面求证: Th((𝕬,f(αᵢ))ᵢ ≤ ₙ) 与 Γ(x) 一致。这是因为对于任意ψ∈Th((𝕬,f(αᵢ))ᵢ ≤ ₙ) ,令 ψ′ 是将 ψ 中出现的 f(αᵢ) 全部替换为 αᵢ ,那么 ψ′∈Th((𝕬,αᵢ)ᵢ ≤ ₙ) ,因此存在赋值使得 (𝕬,αᵢ)ᵢ ≤ ₙ 同时满足 Th((𝕬,f(αᵢ))ᵢ ≤ ₙ) 和 Γ(x) ,因此 Th((𝕬,f(αᵢ))ᵢ ≤ ₙ) 与 Γ(x) 一致。

由于 𝕬 是可数饱和模型且Th((𝕬,f(αᵢ))ᵢ ≤ ₙ) 与 Γ(x) 一致,那么 (𝕬,f(αᵢ))ᵢ ≤ ₙ 实现 Γ(x) ,不妨设 d 在 (𝕬,f(αᵢ))ᵢ ≤ ₙ 实现 Γ(x) ,那么 f∪{(c,d)} 也是从 𝕬 到 𝕬 的部分自同构。递归可将 f 从部分自同构扩张为一个自同构。充分性得证。

必要性:假设 𝕬 是 T 的可数广集模型与齐次模型。令 {α₁,⋯,αₙ}=X 是 A 的子集,定义 tpₓ(x) 是 Th((𝕬,αᵢ)ᵢ ≤ ₙ) 的一个型,令 𝕭 实现 tpₓ(x) 且 𝕭 ⊨ tpₓ(b) ,令 αᵢ 在 𝕭 的赋值是 bᵢ 。由于 𝕬 是 T 的可数广集模型,因此令 f:𝕭 → 𝕬 是初等嵌入映射,设 f(bᵢ)=cᵢ 且 f(b)=c ,因此 𝕬 ⊨ tpf[X](c) 。令 g:𝕬→𝕬 ,其中 g(cᵢ)=αᵢ ,不难证明 g 是 𝕬 的部分自同构且 g◦f[X]=X ,根据齐次模型定义可得:存在 d∈A 满足 g∪{(c,d)} 也是 𝕬 的部分自同构,此时有 𝕬 ⊨ tpₓ(d) ,因此 𝕬 是可数饱和模型,定理成立。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

快穿之天生媚骨 连载中
快穿之天生媚骨
吖吖鹿
琓月为了寻求记忆,与778绑定,,完成任务,收集能量。第一个世界佟佳氏无cp
8.8万字2个月前
茈椛 连载中
茈椛
凌苪玥
这是一个为了修为连人性都可以丢去的世界,但女主不清楚,在某天她得知了自己椛人的身份,她乐观应对,故事由此展开
0.3万字2个月前
kpl:假如一诺有个姐姐 连载中
kpl:假如一诺有个姐姐
欧蕊拉
假如一诺有个姐姐会是什么样呢
0.8万字2个月前
不公定律—打造无罪世界 连载中
不公定律—打造无罪世界
维治托劳斯
嘈杂的声音充斥在教室中,所有人都嘻皮笑脸的,一切都很和谐,但是在这片虚伪的和谐中,藏着许多不为人知的恶劣——对同学的另眼相待,谣言乱飞,校园......
0.5万字1个月前
斗龙战士2之东方末与云知画 连载中
斗龙战士2之东方末与云知画
云知画
正义顽强的东方末和明媚坚毅的云知画从一开始的毒舌相向,到并肩经历种种困难与生离死别,最终成为彼此生命中不可或缺的“soulmate”的故事。......
1.9万字1个月前
被迫绑定系统——穿越时空 连载中
被迫绑定系统——穿越时空
南江有只猫
打工族,林株意外被系统绑定,得知只要做任务就可以得到新的身份后,她毫不犹豫同意了,最后差点被自己坑惨了
0.2万字1个月前