数学联邦政治世界观
超小超大

特殊篇章(数学解释)十六

可数饱和模型=可数广集模型+齐次模型

定理: 𝕬 是可数完备理论 T 的可数饱和模型,当且仅当, 𝕬 是 T 的可数广集模型与齐次模型。

证明:充分性。假设 𝕬 是可数完备理论 T 的可数饱和模型,首先证明可数饱和模型是可数广集模型。令 𝕭 是 T 的模型,求存在 𝕭 到 A 的初等嵌入映射。令 𝕭={bᵢ}ᵢ∈ω ,定义 Γ(x)={ψ(x):𝕭 ⊨ ψ(b₀)} ,由于 𝕬 是可数饱和模型,因此 𝕬 实现 Γ(x) ,不妨设 α₀ 在 𝕬 实现 Γ(x) ,注意此时 (𝕬,α₀)≡(𝕭,b₀) ;继续定义 Γ(x,y)={ψ(x,y):𝕭 ⊨ ψ(b₀,b₁)} ,由于 𝕬 是可数饱和模型,因此 (𝕬,α₀) 实现 Γ(α₀,y) ,不妨设 α₁ 在 (𝕬,α₀) 实现 Γ(α₀,y) ,注意此时 (𝕬,α₀,α₁)≡(𝕭,b₀,b₁) 。递归进行上述过程,可得 (𝕬,αᵢ)ᵢ ∈ω≡(𝕭,bᵢ)ᵢ∈ω ,这就是所求的初等嵌入映射,因此可数饱和模型必然是可数广集模型。

下面证明可数饱和模型是齐次模型。令 f 是从 𝕬 到 𝕬 的部分自同构,设 dom(f)={αᵢ}ᵢ ≤ ₙ ,那么 (𝕬,αᵢ)ᵢ ≤ ₙ ≡(𝕬,f(αᵢ))ᵢ ≤ ₙ ,任选 c∈A−dom(f) ,定义 Γ(x)={ψ(x,α→):𝕬 ⊨ ψ (c,α→)} ,下面求证: Th((𝕬,f(αᵢ))ᵢ ≤ ₙ) 与 Γ(x) 一致。这是因为对于任意ψ∈Th((𝕬,f(αᵢ))ᵢ ≤ ₙ) ,令 ψ′ 是将 ψ 中出现的 f(αᵢ) 全部替换为 αᵢ ,那么 ψ′∈Th((𝕬,αᵢ)ᵢ ≤ ₙ) ,因此存在赋值使得 (𝕬,αᵢ)ᵢ ≤ ₙ 同时满足 Th((𝕬,f(αᵢ))ᵢ ≤ ₙ) 和 Γ(x) ,因此 Th((𝕬,f(αᵢ))ᵢ ≤ ₙ) 与 Γ(x) 一致。

由于 𝕬 是可数饱和模型且Th((𝕬,f(αᵢ))ᵢ ≤ ₙ) 与 Γ(x) 一致,那么 (𝕬,f(αᵢ))ᵢ ≤ ₙ 实现 Γ(x) ,不妨设 d 在 (𝕬,f(αᵢ))ᵢ ≤ ₙ 实现 Γ(x) ,那么 f∪{(c,d)} 也是从 𝕬 到 𝕬 的部分自同构。递归可将 f 从部分自同构扩张为一个自同构。充分性得证。

必要性:假设 𝕬 是 T 的可数广集模型与齐次模型。令 {α₁,⋯,αₙ}=X 是 A 的子集,定义 tpₓ(x) 是 Th((𝕬,αᵢ)ᵢ ≤ ₙ) 的一个型,令 𝕭 实现 tpₓ(x) 且 𝕭 ⊨ tpₓ(b) ,令 αᵢ 在 𝕭 的赋值是 bᵢ 。由于 𝕬 是 T 的可数广集模型,因此令 f:𝕭 → 𝕬 是初等嵌入映射,设 f(bᵢ)=cᵢ 且 f(b)=c ,因此 𝕬 ⊨ tpf[X](c) 。令 g:𝕬→𝕬 ,其中 g(cᵢ)=αᵢ ,不难证明 g 是 𝕬 的部分自同构且 g◦f[X]=X ,根据齐次模型定义可得:存在 d∈A 满足 g∪{(c,d)} 也是 𝕬 的部分自同构,此时有 𝕬 ⊨ tpₓ(d) ,因此 𝕬 是可数饱和模型,定理成立。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

镜中渊:忘语 连载中
镜中渊:忘语
晨亦love
在这无限流里存活下去
2.2万字5个月前
最后让我在看ta 连载中
最后让我在看ta
南屿崽
我是林川,永远爱着别人31的林川的想问29岁的林川,值得吗?我就是我,谁都替代不了四季的轮回,我们还会在见面的最后在看ta,看的是她还是他记......
10.8万字5个月前
星空下的守望者 连载中
星空下的守望者
橙子🍊🍊_754698565
科技的发展使人类成功走向宇宙,星际时代就此拉开帷幕。当人类的星际移民进行的如火如荼时,来自宇宙深处的神秘敌人却悄然降临……一个从边缘星球走出......
5.0万字4个月前
宠,唯爱一生 连载中
宠,唯爱一生
爱吃香草大富婆
人的一生有很多选择,如果让你有机遇你愿意踏入吗?一个规则的制定者,一个规则下的遵守人,如何擦出火花。请问瓦洛克先生愿意娶文文女士,执子之手与......
6.2万字4个月前
失昼之地 连载中
失昼之地
叁七二十一
和平,安定,完美,怀揣善意之人得到幸福,作恶之人被惩戒放逐。这就是吉索达,光明神塞丽蒂亚庇佑的大陆。而正如光影永恒相随,一切事物终有其反面,......
1.7万字3个月前
奇思妙想,各种各类小说合集 连载中
奇思妙想,各种各类小说合集
king2003
此文不只有一个故事,很多故事,每一个故事都是短篇小说。第一篇:花心痞帅硬汉;季北辰VS独立理智坚韧冷艳美女;莫希。(现代言情,花心浪子遇真爱......
4.2万字2个月前