数学联邦政治世界观
超小超大

Kleene-Brouwer序的一个定理

Kleene-Brouwer序(下面简称<ᴋʙ )是定义在 A<ω 上的一个序, <ᴀ 是 A 上的良序。 <ᴋʙ 定义如下: s<ᴋʙt 当且仅当 s⊃t∨s(δ(s,t))<ᴀt (δ(s,t)) ,其中δ(s,t)=min{n:s(n)≠t(n)}。

我们称T ⊆ A<ω 是well-founded当且仅当 [T]=∅,换言之 T 没有无穷枝(infinity branch),否则我们称 T 是ill-founded。

定理:<ᴀ 是 A 的良序,那么 (T,<ᴛ) 是well-founded当且仅当 (T,<ᴋʙ) 是良序。

证明:假设(T,<ᴛ) 是well-founded,那么 T 没有无穷枝,即每个枝都有terminal: ∀s∈T∃t∈T(s<ᴛ t∧¬∃t'∈T(t<ᴛ t'))。下面证明 (T,<ᴋʙ) 是良序:任选 S ⊆ T ,定义 S' 是 S 的全体terminal,定义 ф⁰={s∈S':∀t∈S',(s(0)≤ᴀ t(0))} ,规定 фⁿ⁺¹={s∈фⁿ:∀t∈фⁿ,(s(n+1)≤ᴀ t(n+1))} ,不难看出 фⁿ⊇фⁿ⁺¹ 。如果 ∀n(фⁿ≠∅) ,可证 (T,<ᴛ) 有无穷枝,矛盾,反证 ∃n(фⁿ=∅) ,令 n₀ 为最小的 фⁿ=∅ 的自然数。由于 фⁿ⁰⁻¹≠∅ ,只需从中选出 s∈фⁿ⁰⁻¹ 满足 ∀t∈фⁿ⁰⁻¹ ,(s(n₀)≤ᴀ t(n₀)),这个 s 即为S 在 <ᴋʙ 下的最小元。

假设(T,<ᴛ) 是ill-founded,那么 t₀<ᴛ t₁<ᴛ· · · 是一个无穷枝,此时有 t₀>ᴋʙ t₁>ᴋʙ · · · ,那么 <ᴋʙ 有无穷递减链,显然不是良序,定理成立。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

三世奇缘——第一世:人间传奇 连载中
三世奇缘——第一世:人间传奇
Aot
她,第一世21世纪杀手NO.1;第二世人见人怕的女魔头;第三世的她又是什么?又会创造什么奇迹?他,神界十重天的太子,当他下凡历劫遇见她时会擦......
0.4万字2个月前
白梓萱与王静 连载中
白梓萱与王静
白梓萱54341348
“东关小学就像那五只小羊一样,快乐,幸福,美丽”“只有露西,并不像只小羊”“东关小学又是一个美丽团结的羊村”“善良团结”“有时候村里也可能混......
0.2万字2个月前
零星诗月 连载中
零星诗月
鱼泷泷
一些磕CP的产文…单纯想写些自己喜欢的CP,不定期更新。(属性比较乱哈,有双女主,双男主,女攻男受,男攻女受,或者人兽恋……等等,有冒犯到的......
1.3万字1个月前
索罗特尔奥特曼 连载中
索罗特尔奥特曼
风起银河下
我是索罗特尔,不要为我的名字害怕贝利亚应该可能大概是我爹捷德应该可能大概是我哥。放心,我不会乱揍人(我揍的都不是人)(故事架空世界线,不喜勿......
1.9万字1个月前
什么时候才能当主角 连载中
什么时候才能当主角
到处随逛
穿越剧情,星越祈穿越到各个剧情中,填各种的坑,填完之后还要带队友做业务,呵呵,不过越来越爽是怎么回事?
0.9万字1个月前
被迫绑定系统——穿越时空 连载中
被迫绑定系统——穿越时空
南江有只猫
打工族,林株意外被系统绑定,得知只要做任务就可以得到新的身份后,她毫不犹豫同意了,最后差点被自己坑惨了
0.2万字1个月前