数学联邦政治世界观
超小超大

Kleene-Brouwer序的一个定理

Kleene-Brouwer序(下面简称<ᴋʙ )是定义在 A<ω 上的一个序, <ᴀ 是 A 上的良序。 <ᴋʙ 定义如下: s<ᴋʙt 当且仅当 s⊃t∨s(δ(s,t))<ᴀt (δ(s,t)) ,其中δ(s,t)=min{n:s(n)≠t(n)}。

我们称T ⊆ A<ω 是well-founded当且仅当 [T]=∅,换言之 T 没有无穷枝(infinity branch),否则我们称 T 是ill-founded。

定理:<ᴀ 是 A 的良序,那么 (T,<ᴛ) 是well-founded当且仅当 (T,<ᴋʙ) 是良序。

证明:假设(T,<ᴛ) 是well-founded,那么 T 没有无穷枝,即每个枝都有terminal: ∀s∈T∃t∈T(s<ᴛ t∧¬∃t'∈T(t<ᴛ t'))。下面证明 (T,<ᴋʙ) 是良序:任选 S ⊆ T ,定义 S' 是 S 的全体terminal,定义 ф⁰={s∈S':∀t∈S',(s(0)≤ᴀ t(0))} ,规定 фⁿ⁺¹={s∈фⁿ:∀t∈фⁿ,(s(n+1)≤ᴀ t(n+1))} ,不难看出 фⁿ⊇фⁿ⁺¹ 。如果 ∀n(фⁿ≠∅) ,可证 (T,<ᴛ) 有无穷枝,矛盾,反证 ∃n(фⁿ=∅) ,令 n₀ 为最小的 фⁿ=∅ 的自然数。由于 фⁿ⁰⁻¹≠∅ ,只需从中选出 s∈фⁿ⁰⁻¹ 满足 ∀t∈фⁿ⁰⁻¹ ,(s(n₀)≤ᴀ t(n₀)),这个 s 即为S 在 <ᴋʙ 下的最小元。

假设(T,<ᴛ) 是ill-founded,那么 t₀<ᴛ t₁<ᴛ· · · 是一个无穷枝,此时有 t₀>ᴋʙ t₁>ᴋʙ · · · ,那么 <ᴋʙ 有无穷递减链,显然不是良序,定理成立。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

星空下的守望者 连载中
星空下的守望者
橙子🍊🍊_754698565
科技的发展使人类成功走向宇宙,星际时代就此拉开帷幕。当人类的星际移民进行的如火如荼时,来自宇宙深处的神秘敌人却悄然降临……一个从边缘星球走出......
5.0万字6个月前
玉言 连载中
玉言
甜墨墨
有病我写的很糟心,看的很糟心。心灵鸡汤保命秘籍随笔会填补的完结再续自我评价:写的神出鬼没的
1.4万字5个月前
守护者们的故事2 连载中
守护者们的故事2
精英豌豆射手
先看《守护者们的故事1》,否则您有可能看不懂。【满天星文社】一盏孤灯,听万物声;满天星辰,照远归人。是的,叶璇之前立下了汗马功劳,可是真正的......
4.4万字4个月前
他是姐姐 连载中
他是姐姐
莫昕染
神的世纪结束了,可偏偏留下了永远的神,为了打破弑神所背负的诅咒,为了对抗新世纪“神”的统治,一体双魄的周思语为收集上古神物血珠所牵扯出一系列......
8.7万字3个月前
狼王梦——遗骸魂 连载中
狼王梦——遗骸魂
孤影共长存
遗愿未了,怎能轻言放弃?
0.3万字1个月前
论人脉的重要性 连载中
论人脉的重要性
花辞苏
观看这本书之前,请一定要丢掉脑子观看。这点十分重要!!!在看之前,请先看一下我对读者说的话,谢谢!这篇文章有三个女主哦,是我和两个朋友一起想......
2.2万字昨天