数学联邦政治世界观
超小超大

Kleene-Brouwer序的一个定理

Kleene-Brouwer序(下面简称<ᴋʙ )是定义在 A<ω 上的一个序, <ᴀ 是 A 上的良序。 <ᴋʙ 定义如下: s<ᴋʙt 当且仅当 s⊃t∨s(δ(s,t))<ᴀt (δ(s,t)) ,其中δ(s,t)=min{n:s(n)≠t(n)}。

我们称T ⊆ A<ω 是well-founded当且仅当 [T]=∅,换言之 T 没有无穷枝(infinity branch),否则我们称 T 是ill-founded。

定理:<ᴀ 是 A 的良序,那么 (T,<ᴛ) 是well-founded当且仅当 (T,<ᴋʙ) 是良序。

证明:假设(T,<ᴛ) 是well-founded,那么 T 没有无穷枝,即每个枝都有terminal: ∀s∈T∃t∈T(s<ᴛ t∧¬∃t'∈T(t<ᴛ t'))。下面证明 (T,<ᴋʙ) 是良序:任选 S ⊆ T ,定义 S' 是 S 的全体terminal,定义 ф⁰={s∈S':∀t∈S',(s(0)≤ᴀ t(0))} ,规定 фⁿ⁺¹={s∈фⁿ:∀t∈фⁿ,(s(n+1)≤ᴀ t(n+1))} ,不难看出 фⁿ⊇фⁿ⁺¹ 。如果 ∀n(фⁿ≠∅) ,可证 (T,<ᴛ) 有无穷枝,矛盾,反证 ∃n(фⁿ=∅) ,令 n₀ 为最小的 фⁿ=∅ 的自然数。由于 фⁿ⁰⁻¹≠∅ ,只需从中选出 s∈фⁿ⁰⁻¹ 满足 ∀t∈фⁿ⁰⁻¹ ,(s(n₀)≤ᴀ t(n₀)),这个 s 即为S 在 <ᴋʙ 下的最小元。

假设(T,<ᴛ) 是ill-founded,那么 t₀<ᴛ t₁<ᴛ· · · 是一个无穷枝,此时有 t₀>ᴋʙ t₁>ᴋʙ · · · ,那么 <ᴋʙ 有无穷递减链,显然不是良序,定理成立。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

粼深时见古 连载中
粼深时见古
珺炤
上辈子有着一个深爱自己的人鱼,却对渣男执迷不悟,被渣男害死,重活一世,她飞奔向他
13.0万字11个月前
半心遗音 连载中
半心遗音
岑笺
主要讲述的是一个法器被众人抢夺的多元素小说,也有宫斗,剧情狗血,慎入
1.2万字10个月前
重来一次会如何 连载中
重来一次会如何
鹤佳m
我是个普通在普通不过的女子,因为含恨死去,上天重新给了我开挂一样的人生。
6.0万字6个月前
灵感小屋的奇怪缘分 连载中
灵感小屋的奇怪缘分
禾日HEri
灵感是咕噜咕噜的泡泡,一不留神就会被小猫的爪子戳破,禾日是灵感小屋的新一任主人,透过小屋的任何东西去窥看泡泡世界的小故事。“今天…是什么呢?......
2.5万字4个月前
世尘风落 连载中
世尘风落
LilacRose
远处传来一声悲歌,前方有烟雾弥漫着,玫瑰被丢进燃气的篝火……看透命运的人要承受命运的折磨。异世法则,多分段剧情,神话
25.3万字4个月前
花沉翎凤(续更中) 连载中
花沉翎凤(续更中)
欲伦.
穆白玉在天界被污蔑受伤在临死之时被花翎阁圣女姜向阳救下,穆白玉经过和姜向阳的种种过去爱之入骨,但是姜向阳应当守花翎阁之约,圣女不得动七情六欲......
2.6万字3个月前