数学联邦政治世界观
超小超大

格代数中的Fibonacci数列

降集:令L 是一个格代数, A⊆L ,定义 A↓={x∈L:∃α∈A,x≤ʟ α} 是 A 的降集。令 𝕺(L)表示 L 的全部降集。

定理:定义如下格代数Lₙ={α₁,· · ·,αₙ,b₁,· · ·,bₙ},满足对于任意 i≤n ,都有αᵢ<bᵢ 和 αᵢ<bᵢ₊₁ 。求证: |𝕺(Lₖ)|=fₖ₊₂ ,其中 f₁=f₂=1 且 fₖ₊₂=fₖ₊₁+fₖ 是Fibonacci数列。

证明:首先给出上述格代数Lₙ 的Hase图

b₁ b₂ b₃ bₙ

↓↗↘↗ · · · ↙↘

α₁ α₂ bₙ₋₁ αₙ.

为了证明定理,我们首先证明如下引理:对于任意格代数L ,都有 |𝕺(L)|=|𝕱|,其中 𝕱 表示 L 中全体反链构成的集合。引理的证明很简单:必要性,每个反链都唯一地诱导一个降集;反过来假设 A⊆L 是一个降集,令 ℭᴀ={B⊆A:B↓=A↓},定义 ℭᴀ 的偏序为 P⊆Q ↔ Q ≤ ℭᴀ P,根据佐恩引理,我们可以得到 (ℭᴀ,ℭᴀ) 的一个极大元 B ,如果 B 不是反链,那么存在 x,y∈B 满足 x<ʟ y,因此 (B−{y})↓=B↓ ,这与 B 是极大元矛盾,反证充分性成立。因此引理成立。(根据格论的对偶原理,我们还可以定义“升集”,并证明升集的数量和反链的数量一样)。

根据引理,定理就转化为Lₖ 的反链的个数是多少。下面利用数学归纳法证明: k=1 时显然定理成立。假设 Lₖ 满足定理,求 Lₖ₊₁ 满足定理。设 A⊆Lₖ₊₁ 是一条反链,如果 αₖ₊₁∉ A,那么 A∈𝕱(Lₖ),其中 𝕱(Lₖ) 是 Lₖ 的全体反链;如果 bₖ₊₁∉A 但 αₖ₊₁∈A ,那么由于 αₖ₊₁ 与 Lₖ 中全部元素都没有序关系,因此这样的 A 有 |𝕱(Lₖ)| 个;如果 bₖ₊₁∈A ,此时 αₖ∈A ,不能看出,这样的反链 A 的个数=│{B∈𝕱(Lₖ):αₖ∈B}│ ,即 |𝕱(Lₖ₋₁)| ,那么 |𝕱(Lₖ)|=2|𝕱(Lₖ)|+|𝕱(Lₖ₋₁)| ,由递归可得 |𝕱(Lₖ)|=fₖ₊₁+2fₖ₊₂=fₖ₊₄ ,由数学归纳法可得定理成立。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

零星诗月 连载中
零星诗月
鱼泷泷
一些磕CP的产文…单纯想写些自己喜欢的CP,不定期更新。(属性比较乱哈,有双女主,双男主,女攻男受,男攻女受,或者人兽恋……等等,有冒犯到的......
1.3万字10个月前
这个自然之灵,自由之子有点腹黑啊 连载中
这个自然之灵,自由之子有点腹黑啊
Y159***65764
**自然之女,自由之灵**她出生于晨曦的温暖,伴着鸟鸣的乐章,她是自然之女,身披阳光的衣裳。她的笑声,是风的低语,她的眼神,是星辰的闪亮。她......
6.9万字9个月前
仙恋之蝶心向帝 连载中
仙恋之蝶心向帝
人鱼雪蓝
讲述了蝴蝶仙子蝶幸与天帝之间跨越身份与天规的绝美爱情故事。蝶幸在偶然间邂逅天帝,从此情根深种。然而,他们的爱情却遭到天庭的重重阻挠,王母娘娘......
2.8万字7个月前
三世情缘之重生后我竟成了仇敌首徒 连载中
三世情缘之重生后我竟成了仇敌首徒
洛安歌
一万年前,他们是伴侣却不得善终。第二世他们没认出彼此站在对立面。今生为师徒。在仇恨与爱慕之情徘徊,难以抉择。
2.8万字6个月前
mbti:多重世界 连载中
mbti:多重世界
星辰梦呓
华倩怜(isfp)在一次上课走神后,意外发现了自己居然拥有异能,更重要的是,这居然跟她失踪了十几年的母亲有关…时空穿越器的出现,让华倩怜来到......
12.0万字4个月前
我的短篇小文……合集 连载中
我的短篇小文……合集
京剧猫伊安逸
短篇小文,主要人物炽风、影时等自创人物,自创小说,希望你们喜欢不喜欢也没关系,我很喜欢(虐文)
1.2万字2个月前