数学联邦政治世界观
超小超大

Full outer measure的定义

在一个Fσ集F ⊂ Xᶜ 使得

μ(F)=μ*(Xᶜ),定义G=Fᶜ,则G ⊃ X是一个Gδ 集,并且

μ*(G\X)=μ*(Xᶜ\F) ≤ μ*(Xᶜ) — μ(F)=0.

所以这个G便是要求的集合。

定义2:任给集合Y ⊂ X ⊂ [0,1],称Y在X上有full outer measure,当且仅当

env(Y)=env(X),即二者拥有相同的包络。

现在来验证几个关于这两个定义的等价命题。

命题1:集合G为集合X的包络当且仅当对任何borel集A ⊂ [0,1],有

μ(A∩G)=μ*(A∩X)。

首先,μ(A∩G) ≥ μ*(A∩X)是显然的。先证明从左到右,任取borel集A,假设μ(A∩G)>μ*(A∩X),来引出矛盾。取一个Gδ集E ⊃ A ∩ X 使得

μ(E)=μ* (A∩X),此时令

F=(A∩G)\E,可知F是borel的,而且因为μ(E)=μ*(A∩X)<μ (A∩G),所以μ(E)>0 。但是, 注意到

F=(B∩G)\E ⊂ (B∩G)\(B∩X)=B∩(G\X)

所以F ⊂ G\X,而μ*(G\X)=0,所以μ(F)=0,矛盾。

在来证明从右边到左边。考察μ*(G\X),任给闭集D ⊂ G\X,来证明

μ(D)=0。因为

μ(D)=μ(D∩G)=μ*(D∩X)=μ*(∅)=0.

所以μ*(G\X)=0。

命题2:定义2等价于:对任何borel集A ⊂ [0,1],如果 A∩X 是non-null的,则 A∩Y 是non-null的。

先来证明从左到右:取G为X和Y共同的包络。现固定任何borel集A,如果A∩X是

non-null的,即μ*(A∩X)>0,则由命题1可得:

μ*(A∩Y)=μ(A∩G)=μ*(A∩X)>0.

从而 A∩Y也是non-null的。

再来证明从右到左。任取G为X的包络,我们只需要证明G也为Y的包络即可。假设不然,即μ*(G\Y)>0,则存在Fσ集

H ⊂ G\Y,使得

μ(H)=μ*(G\Y)>0。但因为

H∩Y=∅.所以 H∩Y 是null的,由前提假设,这使得H∩X也是null的。然而根据

命题1,

0=μ*(H∩X)=μ(H∩G)=μ(H)>0,

矛盾。

命题3:定义2等价于:对于任何borel集

A ⊂ [0,1],如果A∩X是non-null的,则

A∩Y≠∅.

由命题2,左边蕴含右边是显然的。现在“证明右边蕴含左边。取G为X的包络,我们只需证明G也为Y的包络。实际上证明和命题2的充分性相似。假设G不是Y的包络,则存在Fσ集H ⊂ G\Y使得

μ(H)=μ*(G\Y)>0。但是此时

H∩Y=∅,运用充分性假设,我们有H∩X是null的。但是根据命题1,

0=μ*(H∩X)=μ(H∩G)=μ(H)>0,

矛盾。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

kpl:假如一诺有个姐姐 连载中
kpl:假如一诺有个姐姐
欧蕊拉
假如一诺有个姐姐会是什么样呢
0.8万字5个月前
不公定律—打造无罪世界 连载中
不公定律—打造无罪世界
维治托劳斯
嘈杂的声音充斥在教室中,所有人都嘻皮笑脸的,一切都很和谐,但是在这片虚伪的和谐中,藏着许多不为人知的恶劣——对同学的另眼相待,谣言乱飞,校园......
0.5万字5个月前
亡命之徒:救赎 连载中
亡命之徒:救赎
上官子兰
被人改造的实验体是根本没有人类的感情…———————————————这里是世界上最大的实验基地也是设备样样俱全的“莫古拉实验基地”里面的科学......
0.8万字3个月前
情神……西玫溅妍 连载中
情神……西玫溅妍
慕羽儿mye
在第四维度的灵界上,玫瑰之王西玖溅妍与鹰国之王鹰.维洛依斯之间的超虐言情救赎,最终双双成神的故事!
1.1万字2个月前
猴探oc大乱斗 连载中
猴探oc大乱斗
甜心冰糖
本书主要主角就是猴探的oc们,想要让我加进去你们oc的就加我dy、ks或xhsdy:甜心冰糖ks:冰糖xhs:冰糖头像不变!
8.7万字1个月前
大我七岁的邻居小叔成了我的老公 连载中
大我七岁的邻居小叔成了我的老公
198***310_9541083763
女主是名小说漫画家,男主是国外回来创业的高冷但不霸道的总裁,两人从小是邻居,因男主是邻居爷爷的老来得子,又比女主年长七岁,按辈分成了女主的小......
0.4万字20小时前