数学联邦政治世界观
超小超大

Full outer measure的定义

在一个Fσ集F ⊂ Xᶜ 使得

μ(F)=μ*(Xᶜ),定义G=Fᶜ,则G ⊃ X是一个Gδ 集,并且

μ*(G\X)=μ*(Xᶜ\F) ≤ μ*(Xᶜ) — μ(F)=0.

所以这个G便是要求的集合。

定义2:任给集合Y ⊂ X ⊂ [0,1],称Y在X上有full outer measure,当且仅当

env(Y)=env(X),即二者拥有相同的包络。

现在来验证几个关于这两个定义的等价命题。

命题1:集合G为集合X的包络当且仅当对任何borel集A ⊂ [0,1],有

μ(A∩G)=μ*(A∩X)。

首先,μ(A∩G) ≥ μ*(A∩X)是显然的。先证明从左到右,任取borel集A,假设μ(A∩G)>μ*(A∩X),来引出矛盾。取一个Gδ集E ⊃ A ∩ X 使得

μ(E)=μ* (A∩X),此时令

F=(A∩G)\E,可知F是borel的,而且因为μ(E)=μ*(A∩X)<μ (A∩G),所以μ(E)>0 。但是, 注意到

F=(B∩G)\E ⊂ (B∩G)\(B∩X)=B∩(G\X)

所以F ⊂ G\X,而μ*(G\X)=0,所以μ(F)=0,矛盾。

在来证明从右边到左边。考察μ*(G\X),任给闭集D ⊂ G\X,来证明

μ(D)=0。因为

μ(D)=μ(D∩G)=μ*(D∩X)=μ*(∅)=0.

所以μ*(G\X)=0。

命题2:定义2等价于:对任何borel集A ⊂ [0,1],如果 A∩X 是non-null的,则 A∩Y 是non-null的。

先来证明从左到右:取G为X和Y共同的包络。现固定任何borel集A,如果A∩X是

non-null的,即μ*(A∩X)>0,则由命题1可得:

μ*(A∩Y)=μ(A∩G)=μ*(A∩X)>0.

从而 A∩Y也是non-null的。

再来证明从右到左。任取G为X的包络,我们只需要证明G也为Y的包络即可。假设不然,即μ*(G\Y)>0,则存在Fσ集

H ⊂ G\Y,使得

μ(H)=μ*(G\Y)>0。但因为

H∩Y=∅.所以 H∩Y 是null的,由前提假设,这使得H∩X也是null的。然而根据

命题1,

0=μ*(H∩X)=μ(H∩G)=μ(H)>0,

矛盾。

命题3:定义2等价于:对于任何borel集

A ⊂ [0,1],如果A∩X是non-null的,则

A∩Y≠∅.

由命题2,左边蕴含右边是显然的。现在“证明右边蕴含左边。取G为X的包络,我们只需证明G也为Y的包络。实际上证明和命题2的充分性相似。假设G不是Y的包络,则存在Fσ集H ⊂ G\Y使得

μ(H)=μ*(G\Y)>0。但是此时

H∩Y=∅,运用充分性假设,我们有H∩X是null的。但是根据命题1,

0=μ*(H∩X)=μ(H∩G)=μ(H)>0,

矛盾。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

三生三世十里桃花(2) 连载中
三生三世十里桃花(2)
💍💍冰花雨露🎀🎀👑👑
一声婴啼,一个新生命诞生了。从此天宫上又多了一个小公主,在她身上会发生什么事呢?
0.5万字6个月前
天天暴富APP 连载中
天天暴富APP
奈斯木拉
(已签约+万华镜文社)暴富第一天,到账500万。暴富第二天,到账魔方手表一枚。暴富第三天,到账海城别墅一套。暴富第四天,到账无限额卡一张。…......
39.2万字5个月前
自恋病 连载中
自恋病
斯派修
没有实体cp,但也不是主人公,单独幻想。
0.4万字5个月前
性格缺陷 连载中
性格缺陷
Le néant
【架空世界,双男主,1V1】男主喝了副作用最小的实验体,后期会很强。脑洞可能会有点奇怪,无厘头,男主不善良,有时候可能会有点小阴暗,甚至可能......
22.4万字3个月前
星际迷途:时光之匙 连载中
星际迷途:时光之匙
176***090_0306349480
新人作者,多多关照
1.4万字2个月前
凡人修仙恋 连载中
凡人修仙恋
夜风花
这个是第一次写,写不好大家可以不看,
0.2万字2个月前