数学联邦政治世界观
超小超大

关于体的华罗庚恒等式

设K为一体,α,b∈K且α,b不等于0,且αb≠1,证明华罗庚恒等式:

α –(α⁻¹ +(b⁻¹ – α)⁻¹)⁻¹=αbα 。

体和域的构造类似,不同的是体的乘法没有交换性,四元数集合

{α+bi+cj+dk丨α,b,c,d∈ℝ} 就是一个体,其中

ij= –ji=k,jk= –kj=i,ki= –ik=j

,是不满足交换律的。

我们先来证明,对于任何x≠0,1,恒有

(x⁻¹ –1)⁻¹=(1 – x)⁻¹ –1 。

因为x ≠ 0,1,所以x,(1-x)可逆,且

x⁻¹ ≠ 1,故x⁻¹ –1也可逆。从而:

x⁻¹ –1)x=x⁻¹x – x=1 – x,两边同时右乘x⁻¹,有:

x⁻¹ –1=(1 – x)x⁻¹。于是:

(x⁻¹ –1)⁻¹=((1 – x)x⁻¹)⁻¹=x(1 – x)⁻¹

=(1 – x)⁻¹ – (1 – x)(1 – x)⁻¹

=(1 – x)⁻¹ – 1.

这样就得到了这个结论。

接下来,对于原式:

α – (α⁻¹+(b⁻¹ – α )⁻¹)⁻¹

=α – [α⁻¹(1+α(b⁻¹ – α)⁻¹)]⁻¹

=α – [1+((b⁻¹ – α)α⁻¹)⁻¹]⁻¹α

=α – [1+(b⁻¹ α⁻¹ – 1)⁻¹]⁻¹α

因为a,b不为0,且αb≠1,所以

(αb)⁻¹=b⁻¹α⁻¹≠1,于是可利用刚刚证明的结论:

(b⁻¹α⁻¹ – 1)⁻¹=(1 – αb)⁻¹ – 1 。带入到上面的推导中:

α – (α⁻¹+(b⁻¹ – α)⁻¹)⁻¹

=α – [1+(b⁻¹α⁻¹ – 1)⁻¹]⁻¹α

=α – [(1 – αb)⁻¹]⁻¹α

=α – (1 – αb)α

=αbα.

从而体中的华罗庚恒等式得证。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

all源:疯批实验体 连载中
all源:疯批实验体
鸢源儿
疯批病娇六人✘单纯张
4.0万字8个月前
穿书后我在异世界当团宠帝姬 连载中
穿书后我在异世界当团宠帝姬
柳之之
神秘颜控少女沙小羊,某日在看完玛丽苏剧情的一本书后狠狠地吐槽了一番,结果证明……没事不要在背后说坏话Ծ‸Ծ,一觉醒来,她居然穿越到这本书里面......
8.1万字6个月前
极品风流贵婿 连载中
极品风流贵婿
气泡菌阿六
穿到古代成了陪葬姑爷?媳妇是个植物人?  什么,还和护国大将军有婚约?皇妃娘娘要和我深入交流?  陈叶双肾瑟瑟发抖。这是学韦小宝,集齐七个老......
121.7万字5个月前
缘(无限) 连载中
缘(无限)
旧街灯
1.1万字3个月前
偏爱月亮—— 连载中
偏爱月亮——
糖炒栗子炒鸡好吃
逃离牢笼跳进的却是另一个圈套,她对他们来说只是一件替换品。遇到他,点燃了她心中熄灭已久的火焰。他们能否成为彼此的救赎。养父母以她的错误为筹码......
0.3万字2个月前
快穿:女配,不!是天选万人迷 连载中
快穿:女配,不!是天选万人迷
硬崽
【视觉已出+万人迷+雄竞+修罗场+笨蛋美人+非女强】  林瓷是个小美人,而这样的小美人最适合在前头当貌美但愚蠢的女配使。  好巧不巧,林瓷天......
2.2万字2个月前