数学联邦政治世界观
超小超大

关于体的华罗庚恒等式

设K为一体,α,b∈K且α,b不等于0,且αb≠1,证明华罗庚恒等式:

α –(α⁻¹ +(b⁻¹ – α)⁻¹)⁻¹=αbα 。

体和域的构造类似,不同的是体的乘法没有交换性,四元数集合

{α+bi+cj+dk丨α,b,c,d∈ℝ} 就是一个体,其中

ij= –ji=k,jk= –kj=i,ki= –ik=j

,是不满足交换律的。

我们先来证明,对于任何x≠0,1,恒有

(x⁻¹ –1)⁻¹=(1 – x)⁻¹ –1 。

因为x ≠ 0,1,所以x,(1-x)可逆,且

x⁻¹ ≠ 1,故x⁻¹ –1也可逆。从而:

x⁻¹ –1)x=x⁻¹x – x=1 – x,两边同时右乘x⁻¹,有:

x⁻¹ –1=(1 – x)x⁻¹。于是:

(x⁻¹ –1)⁻¹=((1 – x)x⁻¹)⁻¹=x(1 – x)⁻¹

=(1 – x)⁻¹ – (1 – x)(1 – x)⁻¹

=(1 – x)⁻¹ – 1.

这样就得到了这个结论。

接下来,对于原式:

α – (α⁻¹+(b⁻¹ – α )⁻¹)⁻¹

=α – [α⁻¹(1+α(b⁻¹ – α)⁻¹)]⁻¹

=α – [1+((b⁻¹ – α)α⁻¹)⁻¹]⁻¹α

=α – [1+(b⁻¹ α⁻¹ – 1)⁻¹]⁻¹α

因为a,b不为0,且αb≠1,所以

(αb)⁻¹=b⁻¹α⁻¹≠1,于是可利用刚刚证明的结论:

(b⁻¹α⁻¹ – 1)⁻¹=(1 – αb)⁻¹ – 1 。带入到上面的推导中:

α – (α⁻¹+(b⁻¹ – α)⁻¹)⁻¹

=α – [1+(b⁻¹α⁻¹ – 1)⁻¹]⁻¹α

=α – [(1 – αb)⁻¹]⁻¹α

=α – (1 – αb)α

=αbα.

从而体中的华罗庚恒等式得证。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

兰式玉 连载中
兰式玉
匕首_27562892568598715
苏章是个杀手在执行任务时意外身亡,在睁眼就到了个陌生的地方,还绑定了万圣2.0系统,在个个小世界演绎角色。
1.6万字3个月前
师妹修仙:笑闹青云间 连载中
师妹修仙:笑闹青云间
南山竹海^
本以为修仙之路严肃艰辛,可谁能想到竟有这么一位沙雕师妹,将整个修仙界搅得欢笑不断!看她如何在青云间摸爬滚打,凭借自己的无厘头和独特魅力,闯出......
2.2万字3个月前
三人行之二:金色学院的宝藏 连载中
三人行之二:金色学院的宝藏
璃月非李月
三人行系列2这一本内容逐渐魔幻作者非常需要评论!!看过的朋友们请留下足迹!!不拒绝吐槽月学院内部的规则,究竟有什么意图❓传说中的宝藏,和规则......
5.0万字3个月前
朝暮回响 连载中
朝暮回响
双飞燕y
0.3万字2个月前
猴探oc大乱斗 连载中
猴探oc大乱斗
甜心冰糖
本书主要主角就是猴探的oc们,想要让我加进去你们oc的就加我dy、ks或xhsdy:甜心冰糖ks:冰糖xhs:冰糖头像不变!
8.7万字1个月前
捉住你的小尾巴 连载中
捉住你的小尾巴
淤鱼与欲
“重来一世,我会为你叛神……”迟安无奈苦笑道,醉卧在宫苑中的桃花树下。一朝间,迟安回到年少却什么都不记得,十三出头的迟安在马停街前接住了坠楼......
1.3万字8小时前