数学联邦政治世界观
超小超大

关于体的华罗庚恒等式

设K为一体,α,b∈K且α,b不等于0,且αb≠1,证明华罗庚恒等式:

α –(α⁻¹ +(b⁻¹ – α)⁻¹)⁻¹=αbα 。

体和域的构造类似,不同的是体的乘法没有交换性,四元数集合

{α+bi+cj+dk丨α,b,c,d∈ℝ} 就是一个体,其中

ij= –ji=k,jk= –kj=i,ki= –ik=j

,是不满足交换律的。

我们先来证明,对于任何x≠0,1,恒有

(x⁻¹ –1)⁻¹=(1 – x)⁻¹ –1 。

因为x ≠ 0,1,所以x,(1-x)可逆,且

x⁻¹ ≠ 1,故x⁻¹ –1也可逆。从而:

x⁻¹ –1)x=x⁻¹x – x=1 – x,两边同时右乘x⁻¹,有:

x⁻¹ –1=(1 – x)x⁻¹。于是:

(x⁻¹ –1)⁻¹=((1 – x)x⁻¹)⁻¹=x(1 – x)⁻¹

=(1 – x)⁻¹ – (1 – x)(1 – x)⁻¹

=(1 – x)⁻¹ – 1.

这样就得到了这个结论。

接下来,对于原式:

α – (α⁻¹+(b⁻¹ – α )⁻¹)⁻¹

=α – [α⁻¹(1+α(b⁻¹ – α)⁻¹)]⁻¹

=α – [1+((b⁻¹ – α)α⁻¹)⁻¹]⁻¹α

=α – [1+(b⁻¹ α⁻¹ – 1)⁻¹]⁻¹α

因为a,b不为0,且αb≠1,所以

(αb)⁻¹=b⁻¹α⁻¹≠1,于是可利用刚刚证明的结论:

(b⁻¹α⁻¹ – 1)⁻¹=(1 – αb)⁻¹ – 1 。带入到上面的推导中:

α – (α⁻¹+(b⁻¹ – α)⁻¹)⁻¹

=α – [1+(b⁻¹α⁻¹ – 1)⁻¹]⁻¹α

=α – [(1 – αb)⁻¹]⁻¹α

=α – (1 – αb)α

=αbα.

从而体中的华罗庚恒等式得证。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

喜美:朦胧梦境 连载中
喜美:朦胧梦境
湫日有棂
禁一切作者:湫日有棂【祈念文学社】从学生时期便认识的我们,为什么最后没能走到一起?一场意外把美幻曦带到副本世界,需要前往一个个世界攻略喜易言......
14.7万字2个月前
十二星座:方寸死斗 连载中
十二星座:方寸死斗
简思达江斯特
〖星座文内含cp向注意避雷〗因为杀死所爱之人而被困在噩梦里无法解脱这一次,饱受折磨的少年做了变成女孩子的梦(有刀哈,心理承受能力较差的老婆酌......
1.6万字2个月前
缤纷多彩小故事 连载中
缤纷多彩小故事
风雪轮
多个故事,应该是很简洁的一些故事,一个故事开头结尾结束的很快
3.9万字1个月前
源于创作的故事 连载中
源于创作的故事
创造者小桉
故事中,一个15岁的女孩dawn是一位小作家,某天,她笔下的人物来到了她的世界,他们会发生怎样的故事呢
1.8万字1个月前
旁观者有罪 连载中
旁观者有罪
悲楚南落笔兰
往往查的越多…死的就越快,警告的终端便是死亡,查不到的往往是最危险的,科学的终端是玄学…而玄学的终端则是无尽的幻想……
0.6万字1个月前
琉璃仙途 连载中
琉璃仙途
清辰明月
观影忆往昔,未来载无限。“世界万灵皆具善恶两面,心灵本就复杂变幻莫测,难以一言以蔽之,怎能轻易定夺善恶!”——琉璃“嫉妒什么的最讨厌了,别人......
1.9万字4周前