数学联邦政治世界观
超小超大

西罗定理

西罗第一定理:对于任意素数p, pᵏ 整除有限群 G的阶,则G 中有 pᵏ 阶子群。

证明: 主要思路是考虑群G在G的全体pᵏ 元子集上的群作用,使得集合中某个元素的稳定子阶为 pᵏ 。

设|G|=pˡm , (m,p)=1 。于是 k ≤ l ,令 r=l – k 。设G的全体 pᵏ 元子集为 Ω ,

(pˡm)

显然 |Ω|=(pᵏ)。定义群作用 σ:G × Ω → Ω , σ(g,ω)={gx丨x ∈ ω}, g · ω=σ(g,ω) 。

我一直觉得代数的记号很原始,比如G × Ω → Ω,柯里化一下就是 G → (Ω → Ω) ,对于任意 g∈G , σ(g) 用lambda表示 σ(g)=x → g · x 。于是 σ(αb)=x →(αb) · x=x → α · (b · x)=σ(α)◦σ(b), σ(e)=x → x,其中 x → x 是 SΩ 的单位元。 σ(g)◦σ(g⁻¹)=σ(g⁻¹)◦σ(g)=idΩ,于是 σ(g) 是 Ω 上的双射, σ(g) ∈ SΩ , σ 是G → SΩ 的同态。

对于任意ω ∈ Ω , x ∈ ω , Gω 为 ω 的稳定子, G(ω) 为 ω 的轨道。 x ∈ ω ⊂ G, Gω<G, Gωx是 Gω的右陪集,∀g ∈ Gω , g · ω=ω , gx ∈ ω , Gωx ⊂ ω ,因此|Gω|=|Gωx| ≤ |ω|=pᵏ 。根据轨道稳定子定理

|G| pˡm

|G(ω)|=── ≥ ──=pʳm。

|Gω| pᵏ

如果存在 ω 使得 Gω=pᵏ ,原题得证,否则 ∀ω ∈ Ω 都有 |G(ω)|>pʳm 。

我们只关心p的阶,引入p进求值函数υₚ(x),他代表素数p在x中的阶。由代数基本定理有 υₚ(x × y)=υₚ(x)+υₚ(y) ,υₚ(x+y) ≥ min{x,y} 。

∀ω ∈ Ω:υₚ(|Gω|) ≤ k,当不存在 ω 使得 υₚ(|Gω|)=k,则 υₚ(|Gω|)<k 。根据轨道稳定子定理 |G|=|Gω| × |G(ω)| , υₚ(|G|)=υₚ(|Gω|)+υₚ(|G(ω)|), υₚ(|G(ω)|)>1 – k=r ,|Ω|=∑G(ωᵢ)=min(ω₁,ω₂,. . .,ωₙ)>r

i∈l

(其中 ωᵢ 为每条轨道的代表元)。

(pˡm) pˡm (pˡm – 1)

|Ω|= =── ×

(pᵏ) pᵏ (pᵏ – 1)

pˡm pᵏ – 1 pˡm – i pˡm

=── × ∏ ───=──

pᵏ i=1 pᵏ – i pᵏ

i

pᵏ – 1 pˡ⁻υₚ⁽ⁱ⁾m – ──

υₚ(i)

× ∏ ────────

i=1 pˡ⁻υₚ⁽ⁱ⁾ – i

──

υₚ(i)

,其中 i<pᵏ ,υₚ(i)<k ≤ l ,因此 p丨pˡ⁻υₚ⁽ⁱ⁾ 且 p丨pᵏ⁻υₚ⁽ⁱ⁾ ,

i

但 p ∤ ──,

υₚ(i)

求积符号里的每一项都没有p的因子。 υₚ(|Ω|)

pˡm

=υₚ (──)=r,与 (|Ω|)>r 矛盾,

pᵏ

因此一定存在 ω 使得 |Gω|=pᵏ 。

西罗第二定理:群G的p子群包含于某个西罗p子群,西罗p子群彼此共轭

引理:p群H在集合 Ω 有一个群作用 σ:H × Ω → Ω,则 |Ω| ≡ |Ω₀|(mod p)。

定义 Ω 上的关系,因此p││H(ωᵢ) 他满足自反性: σ(e,α)=α ,对称性: σ(g,α)=b 则 σ(g⁻¹,b)=σ(g⁻¹,σ(g,α))=σ(g⁻¹g,α)=α,传递性: σ(g,α)=b, σ(h,g)=c 则 σ(gh,α)=σ(g,σ(h,α))=c 。它是一个等价关系,每个等价类是 Ω 的一个轨道。如果某个轨道只有一个元素 ω ,则他的稳定子

|H|

|Hω|=───=|H|,

H(|ω|)

于是 ω 是不动点,他的稳定子是整个群。

令Ω₀ 为 Ω 的所有不动点,|Ω|=|Ω₀|+∑|H (ωᵢ)| i∈l

,其中 ωᵢ 为非不动点轨道代表元,因此 H(ωᵢ)>1,又 |H(ωᵢ)|

|H|

= ───,

|Hωᵢ|

因此 p丨丨H(ωᵢ) , |Ω| ≡ |Ω₀|(mod p)。

证明:对于任意G的p子群H,西罗p子群P,令Ω 为G到P的左商集,

[G]

|Ω|=[G:P]=──=m。

|P|

定义群作用 π:H × Ω → Ω , π(h,gP)=(hg)P 。由引理 |Ω| ≡ |Ω₀|(mod p) , |Ω₀|>0 ,因此 Ω 有不动点 gP 。 ∀h ∈ H,π(h,gP)=(hg)P=gP,于是 hg~g (左陪集等价), g⁻¹hg ∈ P ,设 g⁻¹hg=p ,h=gpg⁻¹ ∈ gPg⁻¹ , H ⊂ gPg⁻¹ 。当H是西罗p子群时

|H|=|P|=|gPg⁻¹| ,于是 H=gPg⁻¹ , 因此西罗 p子群彼此共轭, gPg⁻¹ 也是西罗p子群。

西罗第三定理:群G的阶为 pˡm 且, (m,p)=1,令西罗p子群的个数为 ⁿp ,则:

1. nₚ|m ,m为西罗p子群在G中的指数。

2. nₚ ≡ 1(mod p)

3. nₚ=[G:Nɢ(P)] ,P为G的任意一个西罗p子群,Nɢ(P) 为P在G中的正规化子。

设G的全体西罗p子群为Ω ,考虑G在 Ω 上的共轭作用 σ:G × Ω → Ω , σ(g,P)=gPg⁻¹,P的稳定子 Gᴘ 就是P在G中的正规化子 Nɢ(P) 。

∀p ∈ P:pPp⁻¹ ⊂ P, |pPp⁻¹|=|P| ,于是 pPp⁻¹=P , P ⊂ Nɢ(P) , ∀α ∈ Nɢ(P),αPα⁻¹=P ,因此 P ◃ Nɢ(P) 。

证明:西罗p子群彼此共轭,于是∀P ∈ Ω , nₚ=|G(P)|=[G:Gᴘ]=[G:Nɢ(P)]。 |G|

──

|G| |P|

[G:Nɢ(P)]=───=───

|Nɢ(P)|| |Nɢ(P)|

────

|P|

m

=────

[Nɢ(P):P]

,因此 nₚ丨m , (nₚ,p)=1。

考虑P在Ω 上的共轭作用 τ:P × Ω → Ω , (|Ω|,p)=1,于是 Ω 有不动点。取 Q ∈ Ω₀ , ∀p ∈ P pQp⁻¹=Q,于是 P<Nɢ(Q) ,因此P也是 Nɢ(P) 的西罗p子群,又 Q ◃ Nɢ(Q) ,于是 P=Q , |Ω₀|=1 。 nₚ=|Ω| ≡ |Ω₀| ≡ 1(mod p) 。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

粼深时见古 连载中
粼深时见古
珺炤
上辈子有着一个深爱自己的人鱼,却对渣男执迷不悟,被渣男害死,重活一世,她飞奔向他
13.0万字1个月前
三人行之一:魔法列车的低语 连载中
三人行之一:魔法列车的低语
璃月非李月
魔幻小说作者某天突然的脑洞,有点发疯,自认为能到个小学水平#求评论!不拒绝吐槽但别过分了灵湖小学五年三班迎来了一个新班主任!但这位班主任的行......
4.3万字1个月前
缤纷多彩小故事 连载中
缤纷多彩小故事
风雪轮
多个故事,应该是很简洁的一些故事,一个故事开头结尾结束的很快
3.9万字1个月前
际缘 连载中
际缘
清沐兮颜
0.3万字1个月前
少女魔法师 连载中
少女魔法师
朴贝
四个生活在魔法城的魔法少女保护世界的故事
3.1万字1个月前
陌上月寒 连载中
陌上月寒
乔忆娇
神族战神转世为花界一个古灵精怪的小花精结识了温文尔雅的芍药花精又遇到了被抛弃的魔族殿下,她与他们之间会发生怎样的故事。
1.4万字4周前