数学联邦政治世界观
超小超大

指标定理(四)

注意:指标定理(4/5)

16

Now we compute its topological index. We need to compute the Chern character of an induced bundle,and we consider this in a general setting.

Let ρ:∪ₙ → ∪ₘ be a homomorphism,and E be a complex vector bundle of rank n. Denote the induced bundle by E × ᵨ ℂᵐ. We want to find how the Chern classes of the two bundles are related.

Without loss of generality,we assume that E=l₁⨁ · · · ⨁lₙ,that is to say,the structure group has been reduced to the torus Tⁿ. ρ defines a representation of the torus and the representation decomposes into one-dimensional ones,since Tⁿ is compact and abelian.

We first consider α:Tⁿ= S¹ × · · · × S¹ → S¹. Suppose it is of the form (z₁,. . .,zₙ) ↦

∏zᵢᵏⁱ,kᵢ ∈ ℤ. The S¹-bundle ET × α S¹ → BT has first chern class c(α) ∈ H²(BT;ℤ),which is the image of the generator in H²(BS¹;ℤ). H*(BT;ℤ)=ℤ[t₁,. . .,tₙ] is the tensor product of copies of H*(BS¹;ℤ).

Let ф:Tⁿ → Uₙ be the embedding. The bundle ET ×α ℂ → BT has transition functions ∏ fᵢᵏⁱ when ET × ф ℂⁿ=l₁⨁ · · · ⨁lₙ → BT has transition functions (f₁,. . .,fₙ),according to the definition of α. Thus ET × α ℂ → BT is isomorphic to l₁ᵏⁱ ⨂ · · · ⨂lₙᵏⁿ .Thus c(α)=∑kᵢtᵢ.

In general,if α=(α¹,. . .,αᵐ):Tⁿ → Tᵐ,

ch(ET × α ℂᵐ)=∑eᶜ⁽αʲ⁾=∑eΣᵢᵏʲᵢᵗᵢ .

ⱼ ⱼ

The total Chern class is

c(ET × α ℂᵐ)=∏(1+c(αʲ))=∏(1+∑kʲᵢtᵢ).

ʲ ⱼ

By splitting principle,this is true for general rank n complex vector bundles. Here are some examples:i) ρ:∪ₙ → ∪ₙ is conjugation (of complex numbers). E × ᵨ

ℂⁿ=E*=ˉE. kⁱⱼ=–δⁱⱼ.

ₙ ₙ

c(E*)=∏(1 – xᵢ)=∑(–1)ⁱcᵢ(E).

ᵢ₌₁ ᵢ₌₀

ii) For ∧ᵏ E,u ∈ Tⁿ acts as eᵢ₁ ∧ · · · ∧ eᵢₖ ↦ ue,∧ · · · ∧ ueᵢₖ.

c(αᵢ₁,. . .,ᵢₖ)=xᵢ₁+· · ·+xᵢₖ and c(∧ᵏE)

=∏ (1+(xᵢ₁+· · ·+xᵢₖ)).

1≤i₁<· · ·<iₖ≤n

iii) For ∧ᵏE*,

c(∧ᵏE*)=∏ (1–(xᵢ₁+· · ·+xᵢₖ)).

1≤i₁<· · ·<iₖ≤n

ch(∧ᵏE*)=∑eˉ(xᵢ₁+· · ·+xᵢₖ)).

1≤i₁<· · ·<iₖ≤n

iv)

ⁿ ⁿ

∑ ch(∧ᵏE*) · tᵏ=∏(1+te⁻ˣⁱ).

ₖ₌₀ ᵢ₌₁

Now let’s consider an oriented real bundle E of rank 2n. By splitting principle, we may assume that it splits into a direct sum of oriented plane bundles (or complex line

17

bundles) and talk about its Chern roots. We want to calculate ∑ⁿₖ₌₀ ch(∧ᵏE* ⨂ ℂ) · tᵏ Let ρ:Tⁿ ⊂ SO₂ₙ → ∪₂ₙ be the inclusion,where Tⁿ denotes the standard maximal torus. This Tⁿ ⊂ ∪₂ₙ is a conjugate subgroup of a torus in the standard maximal torus in ∪₂ₙ, and the conjugation restricts to

(cos(2πtᵣ) –sin(2πtᵣ)

) ↦(ᵉⁱ²πᵗʳ 0)

(sin(2πtᵣ) cos(2πtᵣ) ( 0 ₑ⁻ⁱ²πᵗʳ)

on each S¹. Thus the weights of ρ:Tⁿ ⊂ SO₂ₙ → ∪₂ₙ are (x₁,–x₁,. . .,xₙ,–xₙ). where the xᵢ’s are the Chern roots. By the same argument as above,

ⁿ ₙ

∑ch(∧ᵏE* ⨂ ℂ) · tᵏ=∏(1+te⁻ˣⁱ)(1+teˣⁱ). ᵢ₌₁

ₖ₌₀

Settingt=–1,we have

ₙ ₙ

∑ch(∧ᵏE* ⨂ ℂ) · (–1)ᵏ=∏(1 – e⁻ˣⁱ)(1 – eˣⁱ). ᵢ₌₁

ₖ₌₀

Thus for the de Rham complex defined for an oriented compact 2n-dimensional manifold,

indₜ(d)=〈((∑(–1)ⁱ · ch(∧ⁱT* ⨂ ℂ) )

ᵢ₌₀

ₙ xⱼ 1

∏(─── · ───).[X]〉

ⱼ₌₁ 1 – e⁻ˣʲ 1– eˣʲ

=〈(∏(1 – e⁻ˣⁱ)(1 – eˣⁱ)

ᵢ₌₁

ₙ xⱼ 1

∏ (─── · ───)),[X]〉

ⱼ₌₁ 1 – e⁻ˣʲ 1 – eˣʲ

=e(X)

=indα(d).

3.2 Dolbeault complex

Let X be a complex n-dimensional manifold,Tℝ its tangent bundle as a real manifold, and T=T¹,⁰ the holomorphic tangent bundle. Recall that

__

T*ℝ ⨂ ℂ ≅ T* ⨁ T*,

__

∧ⁱ(T*ℝ ⨂ ℂ) ≅ ∧ⁱ(T* ⨁ T*) ≅ ⨁ₚ₊q₌ᵢ (∧ᴾT*

__

⨂ ∧qT*).

__

Let ∧ᴾ,q=∧ᴾT* ⨂ ∧qT*,Aᴾ,q:=Γ

__

(∧ᴾT* ⨂ AqT*).The exterior derivative d: Aᴾ,q → Aᴾ⁺¹,q ⨁ Aᴾ,q⁺¹ splits into d=∂+ˉ∂,with ∂:Aᴾ,q → Aᴾ⁺¹,q and ˉ∂: Aᴾ,q → Aᴾ,q⁺¹.

One easily check that as before,ˉ∂ defines an elliptic complex of differential operators for each fixed p. This is called the Dolbeault complex. Let Hᴾ,q be the q-th cohomology group of this complex,and hᴾ,q be its dimension.

Definition 5 For fired p,χᴾ;=∑ⁿq₌₀(–1)q h ᴾ,q is defined to be the αnαlyticαl index of ˉ∂. χ⁰ is αlso cαlled the αrithmetic genus.

Now we would like to find what the topological index is by the index theorem. First set p=0.

__

∧qT*=AqT. By the calculations in the former subsection we have

ₙ ₙ

∑ch(∧ᵏT) · tᵏ=∏(1+teˣⁱ).

ₖ₌₀ ᵢ₌₁

18

Thus

χ⁰=〈((∑(–1)ⁱ · ch(∧ᵏT)

ᵢ₌₀

ₙ xⱼ 1

∏(─── · ───)),[X]〉

ⱼ₌₁ 1 – e⁻ˣʲ 1 – e⁻ˣʲ

ₙ xⱼ

=〈∏(───)),[X]〉

ⱼ₌₁ 1 – e⁻ˣʲ

=Td(T)[X]=Td(X).

For general p,define χy=∑ⁿₚ₌₀ χᴾ·yᴾ to be a formal linear combination of χᴾ. Formally χy is the analytical index of the elliptic complex (Cq,ˉ∂),whose direct summands consist of yᴾ copies of the p-th complex for each p, i.e. Cq=⨁ₚyᴾ · ∧ᴾ,q.

Thus

∑(–1)q ch(Cq)=∑(–1)q yᴾ ch(∧ᴾT*)ch(∧qT)

p,q

= (∑(–1)q ch(∧q T))(∑ yᴾch(∧ᴾT*))

q p

=∏(1 – eˣʲ)(1+ye⁻ˣʲ),

and consequently

ₙ xⱼ

χy=∏((1+y · e⁻ˣʲ) ───) [X].

ⱼ₌₁ 1 – e⁻ˣʲ

That is,

ₙ xⱼ

χy=∫ₓ∏((1+y · e⁻ˣʲ) ───).

ⱼ₌₁ 1 – e⁻ˣʲ

This finishes the calculation.

For y=0。the above formula tells us that

χ₀=χ(X,𝓞 )=∫ₓ Td(X).

Indeed this is a special case of Hirzebruch-Riemann-Roch theorem,as we will see later.

For y=–1 and X an n-dimensional compact Kähler manifold,this yields the Gauss-Bonnet formula

χ–1=∑(–1)ᴾ⁺q hᴾ,q=e(X)=∫ₓ∏ xⱼ=∫ₓ cₙ(x). ⱼ₌₁

For y=1 and X a 2n-dimensional compact Kähler manifold,the χy-genus is

ₙ xⱼ

χ₁=χ(X,⨁Ωᴾₓ)=∫ₓ∏((1+eˉˣʲ)───)

ⱼ₌₁ 1 – e⁻ˣʲ

=∫ₓL(X),

where L(X)=L(p(X)) is the L-class explained later. This is the Hirzebruch signature theorem.

19

4 Hirzebruch Signature Theorem

4.1 Multiplicative sequence

Let A be a fixed commutative ring with unit, and A* a graded A-algebra. Write AΠ for the ring of formal power series α₀+α₁+. . ., where αᵢ ∈ Aⁱ,and AΠ₀ for its subset containing elements with leading term 1. AΠ₀ form a group under multiplication.

Now consider a sequence of polynomials

K₁(x₁),K₂(x₁,x₂),K₃(x₁,x₂,x₃),. . .

with coefficients in ∧ such that,if the variable xᵢ is assigned degree i,then each Kₙ (x₁,. . .,xₙ)is homogeneous of degree n. Given an element α ∈ AΠ with leading term 1, define a new element K(α) ∈ AΠ by the formula

K(α)=1+K₁(α₁)+K₂(α₁,α₂)+ . . .

Definition 6 These Kₙ form α multiplicαtiυe sequence if K(αb)=K(α)K(b) for αll grαded ∧-αlgebrαs A* αnd αll α,b ∈ AΠ₀(i.e.K:AΠ₀ → AΠ₀ is α group homomorphism).

Theorem 11 Giυen α formαl pοωer series f(t)=1+λ₁t+ . . . ωith coefficients in ∧,there ezists α unigue multiplicαtiυe sequence such thαt K(1+t)=f(t) for αll 1+t ∈ AΠ₀.

We omit the proof. Note that if α=(1+t₁) . . . (1+tₙ),then K(α)=f(t₁) . . . f(tₙ). tᵢ

Consequently,the Todd class ∏ᵢ ───

1–e⁻ᵗⁱ

∈ HΠ(B∪ₙ;ℚ) is indeed given by the mul-tiplicative sequence associated to the series

x

td(x)=───,

1–e⁻ˣ

where we take ∧=ℚ,AΠ=HΠ(B∪ₙ;ℚ). We may write

Td(c)=∏ td(tᵢ) ∈ HΠ(B∪ₙ;ℚ).

where c is the total Chern class and tᵢ’ s are the Chern roots.

Here you may notice somet hing strange.tᵢ is indeed in H²(B∪ₙ;ℚ) but not H¹(B∪ₙ;ℚ). To avoid this,we may replace H*(B∪ₙ;ℚ) by H²*(B∪ₙ;ℚ):= ⨁ₖ H²ᵏ(B∪ₙ;ℚ) with grad-ing given by k. We will take this for granted when considering Chern classes,and use H⁴* when considering Pontrjagin classes.

4.2 Hirzebruch signature theorem

We define the L-genus of a 4n-dimensional smooth compact oriented manifold to be

L[M]=〈L(p(M)),[M]〉=〈Lₙ(p₁(M), . . . ,pₙ(M)),[M]〉

where L is the multiplicative sequence associated to

√x 2²ᵏB₂ₖ x x²

──── =∑ ────xᵏ=1+─ – ─

tanh(√x) k≥0 (2k)! 3 45

+ . . . .

For a 4n-dimensional smooth compact oriented manifold,we define its signature σ(M) to be the signature of the symmetric bilinear form defined on H²ⁿ(M⁴ⁿ;ℚ),

(α,b) ↦〈α∪b,[M]〉.

20

Theorem 12 For α 4n-dimensionαl smooth compαct oriented mαnifold.

L[M]=σ(M).

Both sides are algebra homomorphisms from Ω*.⨂ to ℚ (where Ω* is the oriented cobordism ring),so we only need to check the result on the generators ℂP²ᵏ of Ω* ⨂ ℚ.

H²ⁿ(ℂP²ⁿ;ℚ) is generated by a single element and we easily see that its signature is one.

For a complex vector bundle ξ viewed as a real bundle,

1 – p₁+p₂ – · · · =(1 – c₁+c₂ – . . . )(1+C,c₁+c₂+ . . . ).

In particular,for the tangent bundle of ℂPⁿ,

1 – p₁+p₂ – · · · =(1 – α)ⁿ⁺¹(1+α)ⁿ⁺¹=(1 – α²)ⁿ⁺¹,

1+p₁+p₂+ · · · =(1+α²)ⁿ⁺¹. Consequently for ℂP²ᵏ,L(p)=

α

(──)²ᵏ⁺¹,

tαnh(α)

where α is a generator of the cohomology ring.

To calculate〈L(p(ℂP²ᵏ)),[ℂP²ᵏ]〉,it suffices to calculate the coefficient of α²ᵏ

α

in(───)²ᵏ⁺¹.

tαnh(α)

The result follows from direct calculation using contour integration in complex analysis, and this completes the proof. ▢

In the proof above we are using the fact that the total Chern class of ℂPⁿ is of the form (1+α)ⁿ⁺¹ where α is a generator. We sketch a proof.Let L be the tautological line bundle(which is the dual of the hyperplane bundle H).Let ε be the trivial line bundle,and ω the complementary rank n bundle of L ⊂ εⁿ⁺¹. Thus TℂPⁿ=Hom(L,ω) and

TℂPⁿ ⨁ ε=Hom(L,ω ⨁ L)=Hom(L,εⁿ⁺¹)=(n+1)H.

Taking total Chern class of both sides we have c(TℂPⁿ)=(1+c₁(H))ⁿ⁺¹,as desired.

Now we show that this is indeed a special case of the Atiyah-Singer index theorem. Recall Aⁱ:=Γ(∧ⁱ(T* ⨂ ℂ)),〈α,b〉= ∫ₓ α∧ *ˉb.

Define τ:=(–1)ⁱ⁽ⁱ⁻¹⁾/²⁺ᵏ* and d*:= – * d*=–τdτ,where dim(X)=4k,and * is the Hodge-* operator. Since τ² is the identity, ∧(T* ⨂ ℂ)=E₊ ⨁ E₋ splits into eigenbundles with eigenvalues +1 and –1 with respect to τ. Since

T(d+d*)=τd – ττdτ=τd – dτ= –(dτ – τd)

= – (dτ+d*τ)= – (d+d*)τ,

one can consider d+d*:ΓE₊ → ΓE₋.

Recall H²ᵏ(X;ℂ) is isomorphic to the vector space of harmonic forms 𝓡 ²ᵏ(X)=ker(d+d*) ⊂ Γ(∧²ᵏ(T* ⨂ ℂ)). One verifies that 𝓡 ²ᵏ(X) splits into eigenspaces 𝓡 ₊²ᵏ(X)⨁

𝓡 ₋²ᵏ(X) with respect to τ:Γ(∧²ᵏ(T* ⨂ ℂ)) → Γ(∧²ᵏ(T* ⨂ ℂ)). Restricting to the space of real harmonic forms H²ᵏ(X;ℝ) ⊂ H²ᵏ(X;ℂ), this gives exactly the decomposition into positive and negative parts with respect to the intersection form. To see this,for example, for a real harmonic 2k-form α in 𝓡 ₊²ᵏ(X),we have

0<〈α,α〉=∫ₓ α ∧ *α=∫ₓ α ∧ τα=∫ₓ α ∧ α.

Hence σ(X)=dimℂ(𝓡 ₊²ᵏ)–dimℂ(𝓡 ₋²ᵏ). We have an elliptic operator d+d*:ΓE₊ → ΓE₋ since its square is the Laplace operator Δ:Γ(∧(T* ⨂ ℂ)) → Γ(∧(T* ⨂ ℂ)) which

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

十二星座之星空璀璨 连载中
十二星座之星空璀璨
陌cc
当你仰望天空,星空璀璨,繁星闪耀,如此美丽的背后究竟是怎样的凶险和困境,才有如此漂亮的星空呢?星空之下隐藏的秘密又是什么呢?|星空如此璀璨,......
6.3万字2个月前
kpl:假如一诺有个姐姐 连载中
kpl:假如一诺有个姐姐
欧蕊拉
假如一诺有个姐姐会是什么样呢
0.8万字2个月前
勿入混圈 连载中
勿入混圈
段筱玖
女主段筱筱的作死之路
0.2万字2个月前
万人迷她又被强取豪夺了 连载中
万人迷她又被强取豪夺了
李朵儿
【女主万人迷】+【众多修罗场】+【男神收割机】+【颜值巅峰】+【娇软美人】+【可甜可盐】+【强取豪夺】+【玛丽苏】+【绿茶美人】花琉璃只想完......
63.0万字2个月前
顾影自须怜 连载中
顾影自须怜
某懒
一白衣一青袍,两人相伴同行,云游四方,揭开世间百态,有喜,有悲,有离别,有相逢,同在一起便是最好…
4.1万字1个月前
蘤 连载中
繁梦hfrm
本片之前的名字《花》但由于一直打不出来,所以已《蘤》命名本篇文章是以一个穿梭在多重空间里的组织这个组织坐落在一道空间裂缝里名叫溟翼的神秘组织......
1.5万字1个月前