数学联邦政治世界观
超小超大

集合论基数Zermelo-Konig定理

对角线方法表面上是找到一个不在列表中的元素,例如当我们把实数排成一列之后,找到某个实数不属于该序列。它的本质其实是先假设两个集合A,B之间存在双射 f(单射其实就行了),再证明存在某个x ∈ A,

使得f(x) ∉ B,从而假设的 f 不存在。但狭义上的对角线方法不需要选择公理(在构造不属于序列的实数时可以有特定的构造方法),一般情况下还是需要选择公理说明 x 的存在性。

柯尼希定理从左到右存在单射不需要对角线方法,只有证明从右到左不存在单射时需要。根据选择公理,我可以假设直积°和直和都不空。假设存在 Y=∏ Yλ到

λ∈∧

X=∪Xλ的单射,那么存在X到Y的满射,记作f。 ↑

λ∈∧

对于任意入λ∈∧,记 pλ:Y → Yλ 为投影映射,fλ 是把 f:X → Y限制在 Xλ 上的限制映射,那么得到复合映射。

ps ◦fλ:Xλ → Xλ 。因为|Xλl<|Yλ|,所以pλ◦fλ 不可能是满射(否则由分割原则得到

|Xλ|=|Yλ|,这就是要求不等号严格成立的原因)。

为了书写方便令gλ=pλ◦fλ,那么

Zλ=Yλ – gλ(X) ≠ ∅。对非空集族{Zλ|λ∈∧}使用选择公理,从每个 Zλ ⊂ Yλ 中选择一个元素 zλ,得到 z=(zλ)λ∈∧∈Y。又因为f:X → Y 是满射,所以存在x∈X,使得f(x)=z。

由于x∈X=∪ Xλ,所以存在入λ∈∧,

λ∈∧

使得x∈Xλ。此时,

fλ(x)=f(x)=z ⇒ gλ(x)=pλ(z)=zλ ⇒ zλ ∈ gλ (Xλ),与 zλ ∈ Zλ 矛盾。

选择公理的作用一是保证了Y,Zλ ≠ ∅,二是保证了 z 的存在性。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

出没 连载中
出没
我家的糖不甩
月亮《出没》的夜晚,什么故事都有可能发生。纯脑洞文,幻想离奇的事件。这次依旧是光怪陆离的黑暗成人童话,却也不乏温暖和治愈。【在此申明,文中三......
1.6万字1个月前
东方末神秘人 连载中
东方末神秘人
失落的女孩_19702472693173
2.6万字2个月前
魔匙(不是也没有重名的书啊?!) 连载中
魔匙(不是也没有重名的书啊?!)
作者希岚
这是一个多元化的世界,除了人类,普通的动物,还有异兽,异族。这个世界上存在着一种宝物,名为魔匙,可由于力量太强而分散成八块碎片分别由八大族族......
1.6万字2个月前
(无限流)我就是想交个朋友 连载中
(无限流)我就是想交个朋友
麦穗花
【欢迎来到无限世界[域],在这里,特殊能力唾手可得,死亡更不是梦想,随时随地,身临其境,尖叫和欢笑,惊骇与心动,让我们——娱乐至死!】(ㅍ_......
1.3万字2个月前
秋桂花风 连载中
秋桂花风
蛙小呱
我oc小说,因为画技和屎一样,所以来写小说了
0.5万字1个月前
顾影自须怜 连载中
顾影自须怜
某懒
一白衣一青袍,两人相伴同行,云游四方,揭开世间百态,有喜,有悲,有离别,有相逢,同在一起便是最好…
4.1万字1个月前