数学联邦政治世界观
超小超大

Dedekind定理

Dedekind定理:若存在集合 A,B 满足条件:

1.A,B ≠ ∅;

2. A∪B=ℝ

3.对A 中的任意元素 α,B 中的任意元素 b ,都有 α<b

则:

1.A 中无最大元, B 中有最小元;

2.B 中无最大元, A 中有最小元

有且仅有一个成立:

证明:假设 A 中不存在最大元且 B 中不存在最小元

取A 中任一元素 α₁,B 中任一元素 α₂ ,则

α₁+α₂

────

2

一定落在 A,B 中的一个.若其落在 A 中,由于 B 无最小元,故一定存在整数 K 使得

α₂ – α₁

α₂ – ────

K

落在 B 中.

考虑将区间[α₁,α₂] K 等分,则一定存在相邻的两个分点使得左侧的在 A 中而右侧的在 B 中,记左侧的点代表的数为 α₃,右侧的为 α₄;再将区间 [α₁,α₂]K+1 等分,类似得到 α₅,α₆ ...

这样我们就构造出了一个数列{αₙ},它满足:

1.奇数项都在A 中,偶数项都在 B 中;

2.对于∀ϵ>0,取

2(α₂ – α₁)

S=[─────]+2

ϵ

,则对区间[α₁,α₂] S S+1,. . . 等分所形成的所有 {αₙ} 中的项,从中任取 αᵣ,αₘ,则一定有 |αᵣ – αₘ|<ϵ 成立,故 {αₙ} 是 Cαuchy 列,其收敛

设{αₙ} → T ,则 T 一定落在 A,B 中的一个,不妨设其落在 B 中,则由于 B 无最小元,则一定存在 γ∈B 且 γ<T ,则这时取 ϵ=T – γ ,则一定有无穷多连续项落在 B(T,ϵ) 中,这与 {αₙ} 的性质矛盾!

若A 中存在最大元且 B 中存在最小元,则记 A 中最大元为 α,B 中最小元为 b ,则对于 α>b,α=b,α<b 都容易推出矛盾 ▢

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

血之海 连载中
血之海
笔墨sty
台风之爱恨,两界之种种事--水与火,可以相容
3.5万字5个月前
他说自己很棒 连载中
他说自己很棒
切迷
谨慎观看☝
0.6万字3个月前
我将不断追寻精神的本真:两个人的孤独方程 连载中
我将不断追寻精神的本真:两个人的孤独方程
*夜半太阳*
有关于维持时空稳定的失落之石遭到破坏使时空重组,发生在混沌世界的一个小小故事
0.5万字2个月前
777号玻璃树:属于我们的世界幻想 连载中
777号玻璃树:属于我们的世界幻想
*夜半太阳*
有关于维持世界时空的失落之石遭到破坏爆炸导致世界重组后,发生在一个先进的信息文明,以玻璃树作为主角视角的探索故事
0.5万字2个月前
被男人抱着不断升级中 连载中
被男人抱着不断升级中
色气值拉满
宋春樱在姐姐的针对,和母亲漠视,任由宋春樱活在姐姐宋秋月不停针对霸凌下,破釜沉舟出国深造,成功的取得了阶段性成就,站稳了脚跟,有了一份可观的......
14.7万字2个月前
巷来巷往 连载中
巷来巷往
139***084_7062947698
2.2万字2周前