数学联邦政治世界观
超小超大

Dedekind定理

Dedekind定理:若存在集合 A,B 满足条件:

1.A,B ≠ ∅;

2. A∪B=ℝ

3.对A 中的任意元素 α,B 中的任意元素 b ,都有 α<b

则:

1.A 中无最大元, B 中有最小元;

2.B 中无最大元, A 中有最小元

有且仅有一个成立:

证明:假设 A 中不存在最大元且 B 中不存在最小元

取A 中任一元素 α₁,B 中任一元素 α₂ ,则

α₁+α₂

────

2

一定落在 A,B 中的一个.若其落在 A 中,由于 B 无最小元,故一定存在整数 K 使得

α₂ – α₁

α₂ – ────

K

落在 B 中.

考虑将区间[α₁,α₂] K 等分,则一定存在相邻的两个分点使得左侧的在 A 中而右侧的在 B 中,记左侧的点代表的数为 α₃,右侧的为 α₄;再将区间 [α₁,α₂]K+1 等分,类似得到 α₅,α₆ ...

这样我们就构造出了一个数列{αₙ},它满足:

1.奇数项都在A 中,偶数项都在 B 中;

2.对于∀ϵ>0,取

2(α₂ – α₁)

S=[─────]+2

ϵ

,则对区间[α₁,α₂] S S+1,. . . 等分所形成的所有 {αₙ} 中的项,从中任取 αᵣ,αₘ,则一定有 |αᵣ – αₘ|<ϵ 成立,故 {αₙ} 是 Cαuchy 列,其收敛

设{αₙ} → T ,则 T 一定落在 A,B 中的一个,不妨设其落在 B 中,则由于 B 无最小元,则一定存在 γ∈B 且 γ<T ,则这时取 ϵ=T – γ ,则一定有无穷多连续项落在 B(T,ϵ) 中,这与 {αₙ} 的性质矛盾!

若A 中存在最大元且 B 中存在最小元,则记 A 中最大元为 α,B 中最小元为 b ,则对于 α>b,α=b,α<b 都容易推出矛盾 ▢

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

冷宫九公主要翻身 连载中
冷宫九公主要翻身
某家女主
因为不想弄这么多任务,所以就直接只有旁白仿炮灰闺女的生存方式
60.9万字6个月前
书外的你我是天作之合 连载中
书外的你我是天作之合
璟秋竹
明月几时有?把酒问青天。你是暖阳,是我生命里不可缺失的光,你是早晨的太阳,明亮又耀眼。所以,谢谢你永远选择我。苏淮雪,不论书里书外。(双女主......
0.6万字5个月前
斗破神域(复新版) 连载中
斗破神域(复新版)
韵笑笑
本故事就纯属虚构,请勿模仿。本故事讲述了由作者心中的角色幻想出来的各种奇思妙想的故事,可能会有不便之处,请多理解!
5.3万字3个月前
快穿文一本 连载中
快穿文一本
荒林
本人起名废,简介也不会。难哉被“意识”废弃的周夜,在毛遂自荐的系统引导下,误入歧视
1.6万字3个月前
王楚钦:无人知晓的我 连载中
王楚钦:无人知晓的我
吉林的风
清冷记者×天才少年“我们注定不能在一起,我想要无人知晓,而你却家喻户晓”
2.3万字3个月前
世界是个甜蜜的童话 连载中
世界是个甜蜜的童话
童话仙子
讲述南星自幼被南书收养的故事
0.6万字2个月前