数学联邦政治世界观
超小超大

(数学解释)文章

决定性公理

如果采用ZF+AD(决定性公理)系统,决定性公理可以每个实数子集都可测。

决定性公理的一致性相当于无穷个伍丁基数的一致性。

要想证明不可测集的存在性,必须依赖AC(选择公理)。

不可描述性

从不可达基数起这些基数全是通过对V绝对不可描述的扩展得到的,不过数学上的不可描述不是你们说的这些都无法成为X的描述,只有我独家可以。

而是这些描述不仅X有,Y也有。比如一个世界中各方面都很像现实世界可以说包含现实,但实际这些特征都不只是现实世界独有,一堆虚构世界都照样有,所以光靠包含这些描述并不能真正占有现实世界,现实世界就是不可描述的。

比如,如果ω就是大全,那么“对于一切n,都存在一个m使得n﹤m”是ω中的一个基本事实,但对于任何一个有限的世界,都存在一个极大数U,但对于U是不存在一个大于它的数。

所以“对于一切n,都存在一个m使得n﹤m”是一个只有ω才具有的描述而不被其下的小世界具有的,所以ω可以被这句话描述,反之,“存在一个极大数或最强者”是任何有限世界都具有的,无法特定描述包含某个有限世界。

所以对于那些大基数的大往往都是通过这种方式体现:假设大基数公理,我们推导出一个十分强大的性质p,但由于k的不可描述性,k之下也存在满足这个性质的a,并且往往会有很多,所以这个用来描述k非常大的性质其实还是不足以描述k之大。

不动点

凡事皆有原因,对任意x,均有一f(x),原因亦又其原因,对f(x)亦存在f(f(x)),并且,身为原因的一方优先于其结果,比如上帝是世界的原因优先于世界,记f(x)>x,而所谓的不动点,f(x)=x,则表明其是自身的原因。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

极狱——重生之光 连载中
极狱——重生之光
桉姸
剧情跟随故事发展而来
0.7万字12个月前
你惹她?疯癫大佬她最爱斩鬼灭神 连载中
你惹她?疯癫大佬她最爱斩鬼灭神
我饼画的圆
神商止刚睁开眼,就被恶鬼死死掐住脖子开局真凶险,她反手就是一耳光想让老娘现在就挂?打的就是你!面对这颠婆,资深红衣鬼只能跪坐在地哭卿卿——为......
71.3万字10个月前
回溯逆转 连载中
回溯逆转
枫苑音
如果让时间重置,你们能改变未来吗?我期待你们造成的改变。但同时可以承受代价的人离开了就要有无数普通人来承受这个代价[]会同意吗?
0.7万字9个月前
王楚钦:无人知晓的我 连载中
王楚钦:无人知晓的我
吉林的风
清冷记者×天才少年“我们注定不能在一起,我想要无人知晓,而你却家喻户晓”
2.3万字8个月前
悚心笼中 连载中
悚心笼中
暖暖的小太阳nndxty
为何将那明艳动人的蝴蝶囚于牢笼,任其璀璨光芒渐渐消弭。她本是世间鲜有的清醒者,却偏似那飞蛾扑火,自甘沉沦,如众人一般,在这混沌尘世中迷失了方......
0.4万字4个月前
喜羊羊的身世 连载中
喜羊羊的身世
吴沂襄
2.1万字4个月前