数学联邦政治世界观
超小超大

Cauchy-Davenport定理

对于群(G,+) 上的两个非空集合 A,B ,我们定义他们的Minkowski 和为

A+B:={α+b:α ∈ A,b ∈ B}

那么给定|A| 和 |B| , |A+B| 至少有多大呢?这个问题是堆垒数论,加性组合等领域的重要问题之一。历史上,这类问题也曾被称为 α+β 问题;Mann [1]因为在 density 意义下证明了 α+β 问题而获得了 Cole 数论奖。

当我们将群选取为(ℤ,+) 时,只应用小学数学知识,可以很容易的证明下述结论。

Observation:如果 A 是整环 ℤ 的非空有限子集。那么 |A+A| ≥ 2|A| – 1 。

证:由于 A+A 包含 A+min A 以及 A+max A 于是命题显然。这里 min A,max A 指 A 中的最小元素和最大元素。

但是对于一般的群,这个问题就变得没那么显然了。比如对于一个和整数很像的群ℤ/pℤ ,即素数阶循环群。这时候群上的两个集合的Minkowski和最小是多少呢?这个就是著名的Cauchy-Davenport定理:

定理(Cauchy-Davenport):如果 A,B 是 ℤ/pℤ 中的两个非空子集,那么 |A+B| ≥ min{|A|+|B| – 1,p}.

Cauchy-Davenport定理虽然和最上面提到的整数上的现象十分相似,但是证明的难度却相差很多。目前最简单的证明是通过 Nullstellensatz 来证(见 Yifan:我的Prelim考试试题)。

那么对于其他的群呢?

一般的,我们用(G,·) 来表示一个群,于是Minkowski和的定义变为了 AB={αb:α ∈ A,b ∈ B} 。

集合的大小实际上是离散拓扑下的测度。对于局部紧群,我们都有唯一的Haar测度。于是在这种群上我们都可以问,AB 的测度最小是多少呢?

为了简单起见,我们假设A,B 均为紧集,这时候 AB 也是紧集,于是可测。(一般的,如果 A,B 两个集合均可测, AB 不一定可测。学过实分析的同学可以尝试自己构造一下)

如果我们的群G 不包含任何有限正测度子群:即对任意子群 H ,要么 H 零测,要么 H 测度是无穷。这时候,直觉上群中的子群对 AB 的测度大小的影响比较小。比如欧氏空间 ℝⁿ 中,我们有 λ(A+A) ≥ 2ⁿλ(A) ,其中 λ 是 ℝⁿ 上的一个Lebesgue测度。可以看到,这时 A+A 的测度相对于 A 的测度增长很快。这个不等式也被称为Brunn-Minkowski不等式,在几何中有很多应用。这个方向在一般群上的进展也是我和朋友之前证明的一个结果,详见 Yifan:一个Brunn-Minkowski不等式 。

这里我们主要考虑的情况是,在群G 包含有限正测度子群时, A+B 的测度可以有多小。容易看出,假设 H 是某个正测度紧群,且 A=B=H ,那么有 μ(AB)=μ(A)=μ(B) 。这时我们看不到 AB 在测度意义下有任何扩张。(这里 μ 是一个左Haar测度。)

上文也解释了这个现象:在整数中,一个元素加上另一个元素,会等于某一个元素(通俗的说一个数加一个数不会变成俩数)。这是由于整数 ℤ 上包含的最大正测度子群是 {1} ,测度是 1,因此这个子群会“吸收” A+B 上的一个元素。另一方面,两个数加两个数最少包含三个数,这也是由于上述子群最多只能帮我们吸收掉一个元素。

上面的现象看似平凡,但是并没有很平凡。比如在实数ℝ 上,我们搭配 λ 为其上的一个Lebesgue测度。我们可以将整数一一对应到 ℝ 上的区间,比如 1 对应到 [0,1] , 2 对应到 [1,2] 等等。但是这个时候,我们会发现 [0,1]+[0,1]=[0,2] ,即两个长度为 1 的区间加到一起变成了长度为 2 的区间(如果把区间当做数,相当于出现了一个数加一个数变成了两个)。这是由于 ℝ 是连通的,于是它不包含任何有限正测度的子群。这时候就没有子群帮助我们“吸收” A+B 的大小了。

通过对比上文中ℤ/pℤ 上的 Cauchy-Davenport 定理,我们可以猜测,一般群上可能长这样:

μ(AB) ≥ min{μ(A)+μ(B) – μ(H),μ(G)}

其中H 是 G 中测度最大的真子群。考虑到 ℤ/pℤ 最大真子群大小为 1 ,上面的式子,如果成立,完美包含了原来的Cauchy-Davenport。

上面我们的“猜想”,对一般的幺模群是对的。这个结果的各种情况有很多数学家证过,最终阿贝尔群被Kneser证明(现在一般称为Kneser不等式),普通的幺模群被Kemperman证明(现在称为Kemperman不等式)。

可是这个式子在最一般的局部紧群是错的。一般的,假设 μ 是群上左平移不变的Haar测度, A 是某个紧集, 我们选取 B 使得 B 中只包含将 A 向右平移到测度非常小的集合。这时候, μ(AB) 可以非常接近 μ(B) ,哪怕群 G 上并没有任何有限正测度的子群。(特别的, μ(AB) 可以小于 μ(A) )

因此在一般群上,我们需要同时引入左平移测度和右平移测度,来中和一个方向平移带来的影响。下面是我和朋友 Minh[2]最近证明的定理:

定理(J. -Tran, 2021):如果 G 是局部紧群, Δɢ:G → ℝ 是modular function, μ 是一个左平移Haar测度, ν 是一个右平移Haar测度且满足 ν=μ⁻¹ 。如果 A,B 是 G 上的正测度紧集,且 α=inf Δɢ(x),β=sup Δɢ(y) 。 x∈A

y∈B

我们有

{ ν(A) μ(B)

min (───+───)

{ ν(AB) μ(AB)

μ(H)

(1 – ───────)

ον(A)+β⁻¹μ(B)

μ(G)

,───} ≤ 1,

μ(AB)

其中 H 是 ker Δɢ 上测度最大的紧真子群。

注意到当G 是幺模群时, α=β=1 , μ=ν ,上述定理中的不等式会退化成 μɢ(AB) ≥ min{μɢ(A)+μɢ(B) – μɢ(H),μɢ(G)} ,于是也蕴含了最原始的Cauchy-Davenport定理。

参考

1. Henry Mann, A proof of the fundamental theorem on the density of sums of sets of positive integers, Annals of Mathematics, 43 (3) 523-527, 1942.

2. Yifan Jing and Chieu-Minh Tran, A Cauchy-Davenport theorem for locally compact groups, arXiv:2106.02924, 2021.

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

十二星座:与你共存 连载中
十二星座:与你共存
柒染qire
地方叫尔晴洛漓簇使,那里的人培养十二星座,可有一天,一个名叫泫雅的,带领了一群黑衣人闯入了尔晴洛漓簇。她们拿走了族中最珍贵的伊克斯宝石,它是......
2.5万字2个月前
林晓晓 连载中
林晓晓
多吃一点米
故事设定了基调和背景,接下来的故事将围绕陆霆骁和林晓晓之间的关系发展,以及他们如何共同面对即将到来的挑战和阴谋
2.1万字1个月前
际缘 连载中
际缘
清沐兮颜
0.3万字1个月前
全民领主:来自东方的公主殿下 连载中
全民领主:来自东方的公主殿下
雪雪宝儿
无尽大陆,实力为尊。她本是一个普通的女孩儿,却不小心穿越到这神秘的蓝星,进行万族争霸。幸好幸好,有地球妈妈和祖国妈妈给不幸走丢的小姑娘加bu......
0.8万字1个月前
梦之诡见 连载中
梦之诡见
牛毛
我叫夏昭,我猝死了,我以为我会直接死掉,如果我不是因为连续熬了七天夜干物流而猝死结果来到了另一个世界,我差点就信了。
1.7万字1个月前
他说北方有神鹿 连载中
他说北方有神鹿
厌色鹿鸣
【群像】谁苍白了我的等待,讽刺了我的执着。世人皆知四大雅:颜君抱花,公子斩妖,女帝弃剑,云鹤降世。却不知的是:颜君抱花,太子心动,却终是一出......
24.4万字1个月前