数学联邦政治世界观
超小超大

Hartogs number的一个引理

定义集合X 的Hartogs number ℵ(X) 为 min {α ∈ Ord:α ≰ X} 。可以在ZF下证明每个集合都有Hartogs number(hint:否则就会导致Burali-Forti's paradox)

Lemma:对于任意无穷集合X,Y , ℵ(XY)=ℵ(X) × ℵ(Y)

Proof:由于ℵ(X) × ℵ(Y) ≤ max{ℵ(X),ℵ(Y)} ≤ ℵ(XY),因此只用证明 ℵ(XY) ≤ ℵ(X) × ℵ(Y)。

任选 κ<ℵ(XY) 且 κ 是基数,则存在 A ⊂ X × Y 和双射 f:κ → A 。令 A₀=projₓ(A) ∧ A₁=projʏ(A),现在证明 A₀,A₁ 都可以良序化:定义 ψ:A₀ → A 使得 ψ(x)=min Aₓ<ᴀ ,其中 <ᴀ 是 A 上的良序且 Aₓ={(x,y)} ∈ X × Y:(x,y) ∈ A},不难证明 ψ 是单射,因此 A₀ 可被良序化,同理 A₁ 可被良序化。用 ψ,<ᴀ 诱导出的 A₀,A₁ 上的良序的基数 ≤ κ ,且必然在 A₀,A₁ 有一个的基数 ≥ κ ,不妨设 A₀ 的基数 ≥ κ ,则 ℵ(X)>κ ,因此 ℵ(XY) ≤ ℵ(X) × ℵ(Y) ,lemma成立。 ⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

云与夜 连载中
云与夜
琪琪拉
哎嘿!甜甜甜!轻微ABO
2.3万字10个月前
穿书后我在异世界当团宠帝姬 连载中
穿书后我在异世界当团宠帝姬
柳之之
神秘颜控少女沙小羊,某日在看完玛丽苏剧情的一本书后狠狠地吐槽了一番,结果证明……没事不要在背后说坏话Ծ‸Ծ,一觉醒来,她居然穿越到这本书里面......
8.1万字8个月前
王威:唯一 连载中
王威:唯一
裴瑾妤
高甜无虐,这里是王威×阮礼(原创女主)
2.7万字8个月前
西幻:大小姐的抽卡生涯 连载中
西幻:大小姐的抽卡生涯
渣渣羽
【无cp】+【西幻】+【抽卡系统】+【穿越】+【少女漫】+【微无敌流】池念穿越了,穿进了一本名叫《灰姑娘的复仇生涯》的打着大女主标签的玛丽苏......
1.0万字7个月前
清霜碎玉录 连载中
清霜碎玉录
清咸鄱淡
玉骨可碎,孤灯长明——照见无间,亦照归途
32.5万字2个月前
快穿:玉碎纯良 连载中
快穿:玉碎纯良
朽木生华
[女主是古代人][半坏半好][节奏快]沈玉纯,名带温润,性藏阴鸷。洛城沈府的覆灭,白府深宅的构陷,让本就凉薄的骨血彻底淬了毒——半生为棋,天......
10.6万字1个月前