数学联邦政治世界观
超小超大

Hartogs number的一个引理

定义集合X 的Hartogs number ℵ(X) 为 min {α ∈ Ord:α ≰ X} 。可以在ZF下证明每个集合都有Hartogs number(hint:否则就会导致Burali-Forti's paradox)

Lemma:对于任意无穷集合X,Y , ℵ(XY)=ℵ(X) × ℵ(Y)

Proof:由于ℵ(X) × ℵ(Y) ≤ max{ℵ(X),ℵ(Y)} ≤ ℵ(XY),因此只用证明 ℵ(XY) ≤ ℵ(X) × ℵ(Y)。

任选 κ<ℵ(XY) 且 κ 是基数,则存在 A ⊂ X × Y 和双射 f:κ → A 。令 A₀=projₓ(A) ∧ A₁=projʏ(A),现在证明 A₀,A₁ 都可以良序化:定义 ψ:A₀ → A 使得 ψ(x)=min Aₓ<ᴀ ,其中 <ᴀ 是 A 上的良序且 Aₓ={(x,y)} ∈ X × Y:(x,y) ∈ A},不难证明 ψ 是单射,因此 A₀ 可被良序化,同理 A₁ 可被良序化。用 ψ,<ᴀ 诱导出的 A₀,A₁ 上的良序的基数 ≤ κ ,且必然在 A₀,A₁ 有一个的基数 ≥ κ ,不妨设 A₀ 的基数 ≥ κ ,则 ℵ(X)>κ ,因此 ℵ(XY) ≤ ℵ(X) × ℵ(Y) ,lemma成立。 ⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

缤纷多彩小故事 连载中
缤纷多彩小故事
风雪轮
多个故事,应该是很简洁的一些故事,一个故事开头结尾结束的很快
3.9万字12个月前
还好不算晚 连载中
还好不算晚
万花飘落
喜欢点点收藏呗!➤师徒文➤非穿越➤短文
1.2万字10个月前
仙恋之蝶心向帝 连载中
仙恋之蝶心向帝
人鱼雪蓝
讲述了蝴蝶仙子蝶幸与天帝之间跨越身份与天规的绝美爱情故事。蝶幸在偶然间邂逅天帝,从此情根深种。然而,他们的爱情却遭到天庭的重重阻挠,王母娘娘......
2.8万字9个月前
星星在闪耀时,是我在对你说话 连载中
星星在闪耀时,是我在对你说话
绪緖
这是一本虐文,不是很虐,最后除了女二都死了
0.1万字9个月前
慕容归零 连载中
慕容归零
丽夏
慕容前世嫁给了蔡飞,蔡飞家暴直到而死都不明白是,原来蔡飞和慕楠早就勾搭在一起了。原来墨卿才是真正的爱我的,把她抱在怀里哭。蔡飞和慕楠你把墨卿......
13.5万字7个月前
星光闪耀1 连载中
星光闪耀1
练习生白若曦1
这只是我的幻想而已
3.2万字4个月前