数学联邦政治世界观
超小超大

蕴含式的传递性

已知:A ⇒ B:=(¬A)∨B,求证命题P:(A ⇒ B∧B ⇒ C) ⇒ (A ⇒ C)恒为真。

证明:

P ⇔ [(– A∨B)∧(–B∨C) ⇒ (¬A∨C)] ⇔ ¬(¬A∨B)∧(–B∨C)]∨(¬A∨C) ⇔ (A∧¬B)∨(B∧¬C)∨–A∨C

现在讨论真值:

1. 显然A为假或C为真时,P为真。

2. 当A为真且C为假时,有:P=(A∧¬B)∨(B∧¬C) ⇔ (True ∧ ¬B )∨(True∧B) ⇔ ¬B ∖,由排中律,P为真。

蕴含式:A⇒ B

定义:A B:=( ¬ A) ∨ B

由定义可知——“A为真,则可知B为真”的等价表述是“ (¬ A) 为真,或B为真”。

拆解一下这个等价表述:

“(¬ A) 为真,或B为真” ⇒ 有以下两种情况:

(1)¬ A为假(A为真),且B为真;

(2)¬ A为真(A为假),B可以为真也可以为假。

这也等价表述了一种情况:若¬ A为假(A为真),则B不可能为假,也就是说 A 为真并不蕴含着B为假。

蕴含式的传递性:

(A⇒ C) ∧ (C ⇒ B) ⇒ (A ⇒ B)

传递性的等价表述:¬ ((A ⇒ C)∧(C ⇒ B))为真,或 A ⇒ B 为真。

蕴含式的传递性证明:

通过反证法,假设蕴含式的传递性不成立,即¬ ((A ⇒ C)∧(C ⇒ B))为假,且 A ⇒ B 为假,分别考证两个表达式:

1. ¬ ((A ⇒ C)∧(C ⇒ B))为假

可知(A⇒ C)∧(C ⇒ B)为真,则(A ⇒ C)为真 且(C ⇒ B)为真。

(1)(A⇒ C)为真

即:(¬ A) ∨ C 为真,已知 A 为真,则 C 为真。

(2)(C⇒ B)为真

即:(¬ C) ∨ B 为真,由(1)知 C 为真( ¬ C 为假),则 B 必为真。

2. A⇒ B 为假

即(¬ A) ∨ B 为假,已知 A 为真( ¬ A 为假),则 B 必为假。

上述 1 和 2 得出了两个关于 B 的矛盾结论,因此反证法假设不成立⇒ 蕴含式的传递性成立,得证。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

契约的血祭坛(重制版) 连载中
契约的血祭坛(重制版)
心心熠熠
多世界✓主打西幻和科幻✓架空世界宗教有,魔法有伏笔多作者记性不好角色头像来源网络,侵权删(这个tag真的怎么打啊)
1.4万字5个月前
归阔如故 连载中
归阔如故
星之曰月
修仙小说原创大女主回魂肉魄轮回尽,亦是相回白雪纷。每世抗命残伤奄,血发污衣浸红身。自曾梦影现故因,终是相遇还恩情。二世帮协将死人,长貌如吾一......
2.7万字2个月前
元灵纪之恶魔之影 连载中
元灵纪之恶魔之影
一只惵
“从前有一个恶魔…”自古以来,人们总是在杀死或封印恶魔,可谁告诉我为什么天下有这么多恶魔?
1.7万字2个月前
Selita国度的英雄们 连载中
Selita国度的英雄们
死蟒食骸
【龙偶】【自设世界观】曾经,存在着一个神奇而古老的国度,名为Selita。在这个国度里,居住着各色各样的龙,它们是这片土地的真正主宰。其中,......
0.6万字1个月前
逆仙之途 连载中
逆仙之途
土豆西红柿
这是一个神秘而广袤的修仙世界,名为灵境。灵境中,各个门派林立,修仙者们追求着长生不老与强大的力量。天地间灵气充盈,但修仙之路充满艰辛与挑战,......
5.4万字1个月前
惋落 连载中
惋落
曲漾儿
〈正文已完结〉世上再无林晴,只有司清在三外之境和人界的来回穿梭,司清的心被万落给捂热了。但两人并不是一个空间的人,情爱能长久吗?
7.5万字1周前