数学联邦政治世界观
超小超大

蕴含式的传递性

已知:A ⇒ B:=(¬A)∨B,求证命题P:(A ⇒ B∧B ⇒ C) ⇒ (A ⇒ C)恒为真。

证明:

P ⇔ [(– A∨B)∧(–B∨C) ⇒ (¬A∨C)] ⇔ ¬(¬A∨B)∧(–B∨C)]∨(¬A∨C) ⇔ (A∧¬B)∨(B∧¬C)∨–A∨C

现在讨论真值:

1. 显然A为假或C为真时,P为真。

2. 当A为真且C为假时,有:P=(A∧¬B)∨(B∧¬C) ⇔ (True ∧ ¬B )∨(True∧B) ⇔ ¬B ∖,由排中律,P为真。

蕴含式:A⇒ B

定义:A B:=( ¬ A) ∨ B

由定义可知——“A为真,则可知B为真”的等价表述是“ (¬ A) 为真,或B为真”。

拆解一下这个等价表述:

“(¬ A) 为真,或B为真” ⇒ 有以下两种情况:

(1)¬ A为假(A为真),且B为真;

(2)¬ A为真(A为假),B可以为真也可以为假。

这也等价表述了一种情况:若¬ A为假(A为真),则B不可能为假,也就是说 A 为真并不蕴含着B为假。

蕴含式的传递性:

(A⇒ C) ∧ (C ⇒ B) ⇒ (A ⇒ B)

传递性的等价表述:¬ ((A ⇒ C)∧(C ⇒ B))为真,或 A ⇒ B 为真。

蕴含式的传递性证明:

通过反证法,假设蕴含式的传递性不成立,即¬ ((A ⇒ C)∧(C ⇒ B))为假,且 A ⇒ B 为假,分别考证两个表达式:

1. ¬ ((A ⇒ C)∧(C ⇒ B))为假

可知(A⇒ C)∧(C ⇒ B)为真,则(A ⇒ C)为真 且(C ⇒ B)为真。

(1)(A⇒ C)为真

即:(¬ A) ∨ C 为真,已知 A 为真,则 C 为真。

(2)(C⇒ B)为真

即:(¬ C) ∨ B 为真,由(1)知 C 为真( ¬ C 为假),则 B 必为真。

2. A⇒ B 为假

即(¬ A) ∨ B 为假,已知 A 为真( ¬ A 为假),则 B 必为假。

上述 1 和 2 得出了两个关于 B 的矛盾结论,因此反证法假设不成立⇒ 蕴含式的传递性成立,得证。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

笑花的开挂人生! 连载中
笑花的开挂人生!
求放过呆萌花
笑花和系统还有pws的搞笑故事,笑花和系统在等你来!
0.4万字12个月前
我在快穿世界里发疯(不是) 连载中
我在快穿世界里发疯(不是)
有价无市
女主蒋芸,因为一次意外,她来到了这个叫快穿的世界。并且结识了叫瑞瑞的系统。可是,她似乎失去了自己的记忆。于是她大手一摆,竟然来了,那就好好玩......
14.3万字12个月前
秋风下的女孩 连载中
秋风下的女孩
166***982_8882861693
同化,初心,消散
0.3万字10个月前
神修大陆 连载中
神修大陆
唐朝汐
在这个神修的大陆,法术强者为王的大陆上,有无数宗门和学院,可是有这么一个宗门他们以蝶为主,以音为辅,以扇为攻,宗门里的亲生血脉者刚会有一种特......
8.0万字9个月前
砚影池光 连载中
砚影池光
时珺3881882278
5.8万字7个月前
宠我吧,值得相爱的一生 连载中
宠我吧,值得相爱的一生
无子棋
1.5万字3个月前