数学联邦政治世界观
超小超大

pikry forcing

设M是ZFC的可数传递模型,κ是M里的可测基数,D是κ上的normal measure。

我们构造一个力迫扩张M[G]使得基数还是基数,但κ的cofinal变成w。

定义P={(s,A)|s是κ的有限子集,A∈D},(s,A)≥(t,B)当且仅当(t,B)可以这样由(s,A)得到:把A里大于max(s)的一些元素添加进s里,然后删掉A里的一些元素。

对任意s,A,B,(s,A)与(s,B)是兼容的,所以P满足κ⁺-cc。所以大于κ的基数还是基数。

设s是κ的有限子集,σ是力迫语句。我们证明,存在A,使得(s,A)决定σ。

设s'是κ的有限子集。若存在X使得(s∪s',X)⊩σ,就给s'染上红色。若存在X使得(s∪s',X)⊩¬σ,就给s'染上蓝色。若(s∪s',X)对所有X无法决定σ,就给s'染上白色。

注意:显然不可能有s'同时涂红蓝。

由normal measure的性质,存在A使得对任意n,A的所有n元子集都是单色的。若(s,A)无法决定σ,则存在它的两个增强分别force σ和¬σ。设为(s∪s',X)和(s∪s'',Y)。不妨设|s'|=|s''|,X=Y。s'和s''都是A的子集,它们一红一蓝,与A的选取矛盾!

下面我们证明,κ在M[G]中的有界子集也是M的元素。由于两个序数的双射可以编码为它们乘积的子集,所以M中小于κ的基数在M[G]里还是基数。在M[G]里,κ是一列基数的极限,也是基数。

设λ<κ,X是λ的M[G]-子集。任取(s,A)∈G使得(s,A)⊩(X的名字是λ的子集),

对任何α<λ,我们增强(s,A)但不改变s,以确定(α∈X的名字)是否成立。经过λ次增强,A变小了λ次,可以取交,我们得到了一个条件使我们能确定X。

所以(s,A)⊩(X的名字∈Pᴹ(λ)),所以M[G]⊨X∈Pᴹ(λ)。

最后,我们证明在M[G]里cf(κ)=w。

G的所有元素的左分量可以组装成一个长度为w的序列s。

对任意α<κ,考虑P中的稠密集D={(s,A)|max(s)>α}。G与D相交。因此s里有大于α的元素。

因此s在κ里是无界的。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

星空下的守望者 连载中
星空下的守望者
橙子🍊🍊_754698565
科技的发展使人类成功走向宇宙,星际时代就此拉开帷幕。当人类的星际移民进行的如火如荼时,来自宇宙深处的神秘敌人却悄然降临……一个从边缘星球走出......
5.0万字4个月前
白日梦之我是大佬 连载中
白日梦之我是大佬
零时凌
0.6万字3个月前
日常做梦指南 连载中
日常做梦指南
庄馨
许多个小短篇故事,轻松随意,建议睡前食用摘选:一.我知道源哥搞音乐的是艺术家,搞艺术的呢就会经常感性,经常忧郁,不过当初的我只觉得,他那么阳......
0.5万字2个月前
以是思尽莫招桃 连载中
以是思尽莫招桃
茶少馆
殷義·君泽哈尔的身世迷离,在这身世的背后又隐藏了何等残酷的真相呢?此本小说主要是以殷義·君泽哈尔的角度来写,所以一些伏笔会在后面,所以各位小......
0.3万字2个月前
女主她妖又邪你惹她干嘛 连载中
女主她妖又邪你惹她干嘛
陌殇花
『喜欢的话可以动动小指头点个收藏♡』说我是妖女?不好意思你错了!池卿卿笑了,笑的邪魅又肆意…魔本无心,因为遇见你,长出了血肉,生出了情…
2.5万字1周前
当白月爱上朱砂痣 连载中
当白月爱上朱砂痣
甜绾绾
你知不知道我们一次偶遇,是我千方百计算出来的结果?CP多多有甜宠有上下有独占
11.5万字5天前