数学联邦政治世界观
超小超大

pikry forcing

设M是ZFC的可数传递模型,κ是M里的可测基数,D是κ上的normal measure。

我们构造一个力迫扩张M[G]使得基数还是基数,但κ的cofinal变成w。

定义P={(s,A)|s是κ的有限子集,A∈D},(s,A)≥(t,B)当且仅当(t,B)可以这样由(s,A)得到:把A里大于max(s)的一些元素添加进s里,然后删掉A里的一些元素。

对任意s,A,B,(s,A)与(s,B)是兼容的,所以P满足κ⁺-cc。所以大于κ的基数还是基数。

设s是κ的有限子集,σ是力迫语句。我们证明,存在A,使得(s,A)决定σ。

设s'是κ的有限子集。若存在X使得(s∪s',X)⊩σ,就给s'染上红色。若存在X使得(s∪s',X)⊩¬σ,就给s'染上蓝色。若(s∪s',X)对所有X无法决定σ,就给s'染上白色。

注意:显然不可能有s'同时涂红蓝。

由normal measure的性质,存在A使得对任意n,A的所有n元子集都是单色的。若(s,A)无法决定σ,则存在它的两个增强分别force σ和¬σ。设为(s∪s',X)和(s∪s'',Y)。不妨设|s'|=|s''|,X=Y。s'和s''都是A的子集,它们一红一蓝,与A的选取矛盾!

下面我们证明,κ在M[G]中的有界子集也是M的元素。由于两个序数的双射可以编码为它们乘积的子集,所以M中小于κ的基数在M[G]里还是基数。在M[G]里,κ是一列基数的极限,也是基数。

设λ<κ,X是λ的M[G]-子集。任取(s,A)∈G使得(s,A)⊩(X的名字是λ的子集),

对任何α<λ,我们增强(s,A)但不改变s,以确定(α∈X的名字)是否成立。经过λ次增强,A变小了λ次,可以取交,我们得到了一个条件使我们能确定X。

所以(s,A)⊩(X的名字∈Pᴹ(λ)),所以M[G]⊨X∈Pᴹ(λ)。

最后,我们证明在M[G]里cf(κ)=w。

G的所有元素的左分量可以组装成一个长度为w的序列s。

对任意α<κ,考虑P中的稠密集D={(s,A)|max(s)>α}。G与D相交。因此s里有大于α的元素。

因此s在κ里是无界的。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

全民领主:来自东方的公主殿下 连载中
全民领主:来自东方的公主殿下
雪雪宝儿
无尽大陆,实力为尊。她本是一个普通的女孩儿,却不小心穿越到这神秘的蓝星,进行万族争霸。幸好幸好,有地球妈妈和祖国妈妈给不幸走丢的小姑娘加bu......
0.8万字10个月前
幻境大陆 连载中
幻境大陆
彩蝶灵舞
一本属于和魔法相似的魔法小说,一共有十位主角,五位男生,五位女生。不要把其他人当配角看,重复一遍“十位主角”。
3.2万字7个月前
一轮月落 连载中
一轮月落
南弦_
(自4月15号起,日更至少两章)为了世界,可以没有月神,她给自己批命,护苍生、喜乐安康。“所以说,这人界,究竟谁才是月神?又是谁拿了谁的命?......
12.4万字5个月前
原来我就是你 连载中
原来我就是你
鱼仔璃
讲述的是这是一个鬼怪横行的世界女主是玄青山玄清观的关门弟子玄清观的继承人下一任观主,因为贪玩跑到人间去但因为使用法术害死不少人女主的师傅很生......
0.3万字4个月前
这个世界好乱啊——娃娃世界 连载中
这个世界好乱啊——娃娃世界
大作者布丁
大作者和小作者创造了一个世界----娃娃世界,这里发生了很多有趣的故事,是什么呢?快点进去看看吧!
8.8万字3个月前
你就是我的救赎1 连载中
你就是我的救赎1
陌然mrr
有一位叫做梦佳的神明,因神明有一项不能拥有感情的规则,所以从小便欠缺感情,她自己也知道自己和别的神明不一样,她更想要拥有感情的生活,没有感情......
4.1万字2个月前