数学联邦政治世界观
超小超大

Cayley定理

我来举一个最简单的例子抛砖引玉。群论中著名的Cayley定理其实就是Yoneda lemma的特殊情况

Cayley定理:每个群都同构于某个对称群的某个子群。

为了看清两者之间的关系,我们令C 表示只有一个对象 • 的(局部小)群胚,因此 G=Homᴄ(•,•) 在态射的复合下构成一个群(并且,显然的,任何一个群都能被这样实现)。那么,一个协变函子 C → Set 就由一个集合 X 和一个群同态 G → Perm(X) 组成,从而 X 是一个 G-set,而协变函子之间的自然变换就是 G-set之间的等变映射(equivariant map)。因此, Hom (•,–) 就对应 G 左乘自己而定义的群作用。由Yoneda lemma,自然变换的集合 Nat(Hom(•,–),Hom(•,–)) ≅ Hom(•,•)。另一方面,我们不难知道,等式左边在复合运算下构成群 Perm(G) 的一个子群,而且这个集合范畴内的同构也是一个群同态。因此 G 同构于 Perm(G) 的一个子群。这就是Cayley定理。

当然,以上只是局部小范畴的Yoneda lemma的一个运用。但我们对于一个对称闭幺半范畴ν=ν₀,⨂,l,α,λ,ρ (ν₀ 是局部小且完备的)上的一个充实范畴(enriched category) A ,也有(strong) Yoneda lemma[1]:

(strong) Yoneda lemma:给定一个ν -函子 F:A → ν 及一个 A -对象 K ,我们有一个对于 A 的 ν -自然的映射 Fᴋᴀ:A(K,A) → [FK,FA],它在伴随 ν₀(X,[Y,Z]) ≅ ν₀(Y,[X,Z])下的转换 фᴀ:FK → [A(K,A),FA] 也是 ν -自然的。(strong) Yoneda lemma宣称, фᴀ 将 FK 表示为end ∫ᴀ[A(K,A),FA] ,使得我们有同构 ф:FK ≅ [A,ν](A(K,–),F)

它是局部小范畴的Yoneda lemma的推广(我们取ν=Set 就回到局部小范畴的Yoneda lemma)。

Remark 2.1.14. There is a natural way for sPr(C) to be enriched over Set such that S ⨂ P=∐ₛ∈s P ≅ S × P where P is a presheaf and S is a set viewing it as a constant presheaf as well. Then the above lemma actually says P ≅ ∫ᶜ∈C P(c) ⨂ h(c) is the coend. For a simplicial version you can look at the Definition A.5.17.

For a presheaf P:Cᵒᵖ → Set,we can define a Cᵒᵖ-indexed diagram Dᴘ in Pr(C) such that for any object c of C,Dᴘ(c) is the constant presheaf Pᴄ of the set P(c). Then ∫ᶜ∈Cᵒᵖ h(c) × Dᴘ(c) is just ∫ᶜ∈C P(c) ⨂ h(c) since ∐ h(c') Ⅱ (h(c') ≅ ∐(h(c') × Pᴄ).Therefore P ≅ ∫ᶜ∈Cᵒᵖ h(c) × Dᴘ(c).

注意:

∐ ∐

u:c' → c,p∈P(c) u:c' → c

Lemma 2.1.15. If F is α simpliciαl presheαf αnd ωe define α Δᵒᵖ-indexed diαgrαm in sPr(C) such thαt it sends [n] to Fₙ,ωhich is α presheαf of sets but ωe υieω it αs α discrete simpliciαl presheαf.

Then the geometric reαlizαtion |DF| is just F.

Proof. In Definition A.5.17,we have |Dғ|=△⨂ Δᵒᵖ Dғ=∫[ⁿ]∈Δᵒᵖ Δⁿ ⨂ Dғ([n]).

For a fixed object c of C,we obtain |Dғ|ᴄ=∫[ⁿ]∈Δᵒᵖ Δⁿ ⨂ Dғ([n],c). Since Dғ([n],c) is just the constant simplicial set of Fᴄ([n]), from the remark above we see it will be isomorphic to Fᴄ. Therefore |Dғ| ≅ F.□

Lemma 2.1.16.Under αssumptions αbουe,in sPr(C)ᵢₙⱼ the Bousfield-Kαn mαp hocolimDғ → |Dғ| is α ωeαk equiυαlence. And therefore hocolimDғ is ωeαkly equiυαlent to F.

Proof.In sPr(C)ᵢₙⱼ cofibrations are just objectwise cofibrations and in sSet cofibrations are injective maps.

Therefore any object F in sPr(C)ᵢₙⱼ is cofibrant. Then from Definition A.5.22,for any simplicial object X in sPr(C)ᵢₙⱼ its homotopy colimit is computed by the coend N(– ↓ Δ ᵒᵖ)ᵒᵖ ⨂Δᵒᵖ X. Fixing the object c of C,Xᴄ will be a simplicial object in sSet and its homotopy colimit is just the value of hocolimX on c. From Corollary A.5.30 we see the map hocolimXᴄ → |Xᴄ| is a weak equivalence. But |Xᴄ|=|X|(c),this means the Bousfield-Kan map hocolimX → |X| is an objectwise weak equivalence. Especially when X=Dғ,hocolimDғ → |Dғ| is a weak equivalence. □

The above two lemmas are in [DHl04,Remark 2.1].

参考

1. 见G.M.Kelly的Basic Concepts of Enriched Category Theory的2.4节 The (strong) Yoneda lemma for V-CAT; the Yoneda embedding

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

午夜图书馆探索异世界 连载中
午夜图书馆探索异世界
逆卷灵
艾米丽站在画面的前景,她手持一把古铜色的钥匙,钥匙上刻有复杂的符号,散发着微弱的光芒。她的表情既紧张又坚定,目光直视前方。
4.1万字10个月前
噩梦苏醒时分 连载中
噩梦苏醒时分
157***351_2137603610
怪物!怪物!男孩不住的哭喊着,然而,没有一个人搭理他。突然,黑夜里,一双黄色的眼睛转了过来,一股劲风携杂着血腥味像男孩扑去。
3.8万字8个月前
大我七岁的邻居小叔成了我的老公 连载中
大我七岁的邻居小叔成了我的老公
198***310_9541083763
女主是名小说漫画家,男主是国外回来创业的高冷但不霸道的总裁,两人从小是邻居,因男主是邻居爷爷的老来得子,又比女主年长七岁,按辈分成了女主的小......
0.4万字6个月前
我的oc银月的过往 连载中
我的oc银月的过往
右将军
简单来说就是银月的过往
0.5万字5个月前
上帝的宣言 连载中
上帝的宣言
胡秀才
讲述了一个孩子,有着一个不一般的人生,他遭受了生活的折磨,他的出生仿佛在追寻一种东西,他想寻找上帝,为他指出一条明路,指出一条可以拯救全人类......
0.2万字4个月前
上流民宅见闻录 连载中
上流民宅见闻录
雀豆子
这是描绘在到处不知名的现代都市里的上流民宅区里,几个神秘且怀揣着各自秘密的小区保安们的故事。他们分别是来自云南苗疆,一双清澈秀气的时风眼,黑......
3.6万字2个月前