数学联邦政治世界观
超小超大

泛函分析《空间定义》

泛函分析《L^ᵖ空间定义》

今天就介绍一下Lᵖ空间首先,我们利用 L¹(Ω) 表示值域为 ℝ 的 Ω 上的可积函数空间,定义范数(范数需满足正定性、齐次性以及三角不等式): ‖f‖ʟ¹=∫Ω |f(x)|dx

一、重要的积分定理

1. 单调收敛定理:设 {fₙ} 是 ʟ¹ 中序列, ∀n,fₙ ≤ fₙ₊₁ α,e. 有 sup ∫ fₙ<∞ ,

那么 fₙ(x) 在 Ω 上几乎处处收敛,记为 f(x) ,有 f∈L¹ 且 ‖fₙ–f‖ʟ¹ → 0 。

2. Lebesgue控制收敛定理:设 {fₙ} 是 ʟ¹ 中函数序列,假设 fₙ(x) → f(x) α,e 收敛于 Ω 中,且存在函数 g∈L¹ 使得对每个 n , |fₙ(x)| ≤ g(x) α,e. 于 Ω 中,则 f∈L¹ 且 ‖fₙ–f‖ʟ¹ → 0.

3. Fatou引理:设 {fₙ} 是 ʟ¹ 中函数序列使得对每个 n , fₙ(x) ≥ 0 α,e. in Ω,以及满足

sup ∫ fₙ<∞ . 对于每个 x∈Ω ,

令 f(x)=lim inf fₙ(x) ,则 f∈L¹(Ω) 且 ∫ f ≤ lim inf ∫ fₙ. n→∞

4. 记号: Cᴄ={f∈C(Ω),f(x)=0∀x∈Ω – K,K ⊂ Ω }表示 Ω 中具有紧支集的连续函数空间。

5. 稠密性定理:空间 Cᴄ(Ω) 在 ʟ¹ 中稠密,即有 ∀f∈L¹(Ω) 以及 ∀ε>0 , ∃f₁∈Cᴄ(Ω) 使得 ‖f – f₁‖<ε .

6. Tonelli:设 Ω₁,⊂ ℝᴺ¹,Ω₂ ⊂ ℝᴺ² 为开集, F:Ω₁ × Ω₂ → ℝ 为可测函数。假设对几乎处处 x∈Ω₁,∫Ω₂ |F(x,y)|dy<∞ 以及 ∫Ω₁ dx ∫Ω₂ |F(x,y)|dy<∞,那么 F∈L¹(Ω₁ × Ω₂) .

7. Fubini:假设 F∈L¹(Ω₁ × Ω₂),那么对几乎处处 x∈Ω₁,F(x,y) ∈ L¹y(Ω₂) 且有 ∫Ω₂ F(x,y) dy∈L¹ₓ(Ω₁),同样,对于几乎处处 x∈Ω₂,F(x,y) ∈ L¹ₓ(Ω₁) 且有 ∫Ω₁ F(x,y)dx ∈ L¹y(Ω₂),并且有

∫Ω₁ dx ∫Ω₂ F(x,y)dy=∫Ω₂ dy ∫Ω₁ F(x,y)dx=∫ ∫Ω₁×Ω₂ F(x,y)dxdy

二、ʟᵖ 空间的定义

定义 设 p∈ℝ,1 ≤ p<∞,令

Lᵖ(Ω)={f:Ω → ℝ;f |f|ᵖ∈L¹(Ω)}

定义范数‖f‖ʟᵖ=[∫Ω|f(x)|ᵖdx]¹/ᵖ.

定义 令

L∞(Ω)={f:Ω → ℝ;f C |f(x)| ≤ C α,e. Ω }

定义范数

‖f‖ʟ∞=inf{C;|f(x)| ≤ C α,e. Ω}。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

多重宇宙:离婚后,为她一夜白头 连载中
多重宇宙:离婚后,为她一夜白头
笨笨笨小妙
跟心心念念的男人结婚五年后...我心灰意冷,决定离婚。却在一场车祸后...窥探到另一个时空的我和他...原来,那个不说爱的男人,在另一个时空......
28.2万字8个月前
萌萌传 连载中
萌萌传
像老鹰一样123
《这样唱好美》中的女歌手,苏诗丁,唱得歌,比如《杀破狼》,唱得声音很玄空,清脆悦耳,小艳听了也说好听,撒撒听了说摇头,那我问他:“你喜欢什么......
61.9万字5个月前
最后的赢家cu 连载中
最后的赢家cu
叶菱江
修改中
2.6万字4个月前
原来你是审判官? 连载中
原来你是审判官?
温柔淑女就是我
正义,智慧,和平,战争。四大界地明争暗斗,最后赢家是谁?在这个时代,人民才是主导。推翻不义,推翻非现实统治!这是个和平年代,可天下分久必合合......
18.0万字3个月前
归于人海:我们永远都不会有真的相爱 连载中
归于人海:我们永远都不会有真的相爱
温子笙言
这是自述,也是我的幻想,也是我一生摸不着的人
1.4万字3个月前
阎王他妹:判官娘子手撕渣男录 连载中
阎王他妹:判官娘子手撕渣男录
福禍相依
地府十一殿上任的阎罗王有个人尽皆知的软肋——他那个手持判官笔在人间横着走的妹妹雪鸢。当渣男贱女联盟搞出未婚夫劈腿、养女反水、闺蜜背刺的骚操作......
9.5万字2个月前