数学联邦政治世界观
超小超大

泛函分析《空间定义》

泛函分析《L^ᵖ空间定义》

今天就介绍一下Lᵖ空间首先,我们利用 L¹(Ω) 表示值域为 ℝ 的 Ω 上的可积函数空间,定义范数(范数需满足正定性、齐次性以及三角不等式): ‖f‖ʟ¹=∫Ω |f(x)|dx

一、重要的积分定理

1. 单调收敛定理:设 {fₙ} 是 ʟ¹ 中序列, ∀n,fₙ ≤ fₙ₊₁ α,e. 有 sup ∫ fₙ<∞ ,

那么 fₙ(x) 在 Ω 上几乎处处收敛,记为 f(x) ,有 f∈L¹ 且 ‖fₙ–f‖ʟ¹ → 0 。

2. Lebesgue控制收敛定理:设 {fₙ} 是 ʟ¹ 中函数序列,假设 fₙ(x) → f(x) α,e 收敛于 Ω 中,且存在函数 g∈L¹ 使得对每个 n , |fₙ(x)| ≤ g(x) α,e. 于 Ω 中,则 f∈L¹ 且 ‖fₙ–f‖ʟ¹ → 0.

3. Fatou引理:设 {fₙ} 是 ʟ¹ 中函数序列使得对每个 n , fₙ(x) ≥ 0 α,e. in Ω,以及满足

sup ∫ fₙ<∞ . 对于每个 x∈Ω ,

令 f(x)=lim inf fₙ(x) ,则 f∈L¹(Ω) 且 ∫ f ≤ lim inf ∫ fₙ. n→∞

4. 记号: Cᴄ={f∈C(Ω),f(x)=0∀x∈Ω – K,K ⊂ Ω }表示 Ω 中具有紧支集的连续函数空间。

5. 稠密性定理:空间 Cᴄ(Ω) 在 ʟ¹ 中稠密,即有 ∀f∈L¹(Ω) 以及 ∀ε>0 , ∃f₁∈Cᴄ(Ω) 使得 ‖f – f₁‖<ε .

6. Tonelli:设 Ω₁,⊂ ℝᴺ¹,Ω₂ ⊂ ℝᴺ² 为开集, F:Ω₁ × Ω₂ → ℝ 为可测函数。假设对几乎处处 x∈Ω₁,∫Ω₂ |F(x,y)|dy<∞ 以及 ∫Ω₁ dx ∫Ω₂ |F(x,y)|dy<∞,那么 F∈L¹(Ω₁ × Ω₂) .

7. Fubini:假设 F∈L¹(Ω₁ × Ω₂),那么对几乎处处 x∈Ω₁,F(x,y) ∈ L¹y(Ω₂) 且有 ∫Ω₂ F(x,y) dy∈L¹ₓ(Ω₁),同样,对于几乎处处 x∈Ω₂,F(x,y) ∈ L¹ₓ(Ω₁) 且有 ∫Ω₁ F(x,y)dx ∈ L¹y(Ω₂),并且有

∫Ω₁ dx ∫Ω₂ F(x,y)dy=∫Ω₂ dy ∫Ω₁ F(x,y)dx=∫ ∫Ω₁×Ω₂ F(x,y)dxdy

二、ʟᵖ 空间的定义

定义 设 p∈ℝ,1 ≤ p<∞,令

Lᵖ(Ω)={f:Ω → ℝ;f |f|ᵖ∈L¹(Ω)}

定义范数‖f‖ʟᵖ=[∫Ω|f(x)|ᵖdx]¹/ᵖ.

定义 令

L∞(Ω)={f:Ω → ℝ;f C |f(x)| ≤ C α,e. Ω }

定义范数

‖f‖ʟ∞=inf{C;|f(x)| ≤ C α,e. Ω}。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

风吹过十八 连载中
风吹过十八
把作业装进篮子
嫦安…长安,预想平平度过时光,可奈何跌跌撞撞
0.7万字5个月前
漂亮的女人 连载中
漂亮的女人
飞向天宏
某夏天,漂亮的女人与闺蜜去海滩晒太阳,享受着阳光紫外线美身,结果从南方卷起了超强龙卷风……一场意外,成就她们的美梦!
8.0万字3个月前
镜启(完结) 连载中
镜启(完结)
余渊旧林
(因为游戏谈上的俩人帮助岑凛找母亲)幻想
0.4万字2个月前
以是思尽莫招桃 连载中
以是思尽莫招桃
茶少馆
殷義·君泽哈尔的身世迷离,在这身世的背后又隐藏了何等残酷的真相呢?此本小说主要是以殷義·君泽哈尔的角度来写,所以一些伏笔会在后面,所以各位小......
0.3万字1个月前
快穿,美色温柔刀 连载中
快穿,美色温柔刀
大师的兔子
以美色做上钩的饵强取豪夺酸爽文
2.3万字1个月前
怪异的小妹 连载中
怪异的小妹
小鹿童
林家有三子,两男一女。大哥名林萧,二哥为林子洲,三妹唤作林墨。那林墨满月之时,宴席上邀请了各大世家共同庆祝,却突发异状,她小脸泛红,哭声不止......
2.3万字2天前