数学联邦政治世界观
超小超大

无限Galois理论

在无限扩张的时候,有限Galois对应定理是不成立的,为此我们利用拓扑推广Galois对应定理

先引入拓扑

Def 1

设G=Gal(Ω/k),其中 Ω/k 为Galois扩张

∀σ ∈ G,对所有有限子Galois扩张 K/k ,陪集 σGal(Ω/K) 组成 σ 的邻域基‬

称此拓扑为Krull拓扑

定义G × G → G , (σ,τ)↦στ

G → G,σ↦σ⁻¹

为连续映射,则G 为拓扑群

我们来研究G 的拓扑性质

Prop 2

G 紧且Hausdorff

pf

任取互异的σ ,τ ∈ G,存在有限Galois子扩张 K/k 使得 σ[ᴋ ≠ τ] ᴋ

于是σGal(Ω/K) ≠ τGal(Ω/K) 且 σGal(Ω/K) ∩ τGal(Ω/K)=∅

于是G Hausdorff

考虑映射

h:G → ΠᴋGal(K/k)

σ↦Πᴋσ|ᴋ

此处K/k 取遍所有有限Galois子扩张

而Gal(K/k) 离散,于是为紧群,于是 ΠᴋGal(K/k) 紧

由于∀K,σ|ᴋ=1 ⇔ σ=1,

于是h 为单射

集族Πᴋ≠ᴋ₀Gal(K/k) × {ˉσ} 构成 ΠᴋGal(K/k) 的子基‬

其中K₀/k 取遍有限子扩张, ˉσ ∈ Gal(K₀/k)

取上述集族中的一个记为U

若σ 为 ˉσ 的原像,则 h⁻¹(U)=σGal(Ω/K₀)

于是h 连续

而h(σGal(Ω/K₀)=h(G)∩U

于是h 开,于是 h 为同胚‬

下证h(G) 在紧集 ΠᴋGal(K/k) 中闭

任取两个k 的有限子Galois扩张 L' ⊇ L

考虑

Mʟ'/ʟ={Πᴋσᴋ∈ΠᴋGal(K/k)|σʟ'|ʟ=σʟ}

而h(G)=∩ʟ' ⊇ ʟMʟ'/ʟ

于是只需说明Mʟ'/ʟ 闭

若Gal(L/k)={σ₁,. . .,σₙ}, Sᵢ ⊂ Gal(L'/k) 为 σᵢ 在 ʟ' 上的扩张(延拓)

Mʟ'/ʟ=∪ⁿᵢ₌₁ (Πᴋ≠L,ʟ'Gal(K/k) × Sᵢ × σᵢ)

于是Mʟ'/ʟ 闭

下面推广Galois对应定理

Thm 3

设Ω/k 为Galois扩张,则

K↦Gal(Ω/K)

为子扩张K/k 与 Gal(Ω/k) 的闭子群的双射

Gal(Ω/k) 的开子群对应有限子扩张

pf

所有Gal(Ω/k) 的开子群也是闭的,因为作为其开陪集的补集,于是闭

若K/k 为有限子扩张,则 Gal(Ω/K) 开,因为 ∀σ ∈ Gal(Ω/K)

σGal(Ω/N) ⊆ Gal(Ω/K)

其中N 为 k 在 K/k 中的正规闭包‬

若K/k 为任意子扩张,则

Gal(Ω/K)=∩ᵢ Gal(Ω/Kᵢ)

其中Kᵢ/k 取遍 K/k 的有限子扩张

于是Gal(Ω/K) 闭

由于K 为 Gal(Ω/K) 的固定域,于是 K↦Gal(Ω/K) 单

为了说明满,我们证明任意Gal(Ω/k) 的闭子群 H

有H=Gal(Ω/K) ,其中 K 为 H 的固定域

H ⊆ Gal(Ω/K) 显然

反过来,任取σ ∈ Gal(Ω/K) ,若 L/K 为 Ω/K 的有限子Galois扩张

则σGal(Ω/L) 为 σ 在 Gal(Ω/K) 中的邻域基

考虑映射g:H → Gal(L/K)

因为g(H) 有固定域 K ,于是等于 Gal(L/K)

映射H → Gal(L/K)满

于是可取τ ∈ H 使得 τ|ʟ=σ|ʟ ,即 τ ∈ H ∩ σGal(Ω/L)

则σ 属于 H 在 Gal(Ω/K) 中的闭包( σ 每个邻域基中都有 H 中的点)

于是H ⊇ Gal(Ω/K)

于是K↦Gal(Ω/K) 满

若H 为 Gal(Ω/k) 的开集,则其闭,于是 H=Gal(Ω/K)

但Gal(Ω/k) 为 H 的开陪集的不交并‬

由于Gal(Ω/k) 紧,存在有限个 H 的开陪集的并等于 Gal(Ω/k)

于是[Gal(Ω/k):H]<∞

则[K:k]<∞

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

他说北方有神鹿 连载中
他说北方有神鹿
厌色鹿鸣
【群像】谁苍白了我的等待,讽刺了我的执着。世人皆知四大雅:颜君抱花,公子斩妖,女帝弃剑,云鹤降世。却不知的是:颜君抱花,太子心动,却终是一出......
30.7万字11个月前
快穿之恋爱脑男主养成记 连载中
快穿之恋爱脑男主养成记
177***305_2182843138
萧晓:男德班创始人,养成经验源于男人,用于男人。致力于养成恋爱脑男人。
0.3万字9个月前
明暗交响 连载中
明暗交响
屿枫夜
她,曾经是大陆的魔女,人们说她残害亲眷,阴险狠毒,为楚家之耻。最后,她死于那个没有血缘关系的“哥哥”之手。后来,她重生,伪装,复仇。假扮学生......
12.9万字9个月前
除了六哥,我们家,全都是重生的 连载中
除了六哥,我们家,全都是重生的
半生忧伤
(除了主cp外,还有副cp以及同人文cp)先虐后甜百里滟是东临国将军府的嫡小姐,爹爹是东陵国的百里大将军,她上面有六个哥哥,个个人中龙凤…东......
4.4万字7个月前
月绵 连载中
月绵
苍苒
麓夜绵,皇城弃女,身负神血,手持轮回笔与清心铃,却不知自己正是三界动荡的钥匙。
4.5万字6个月前
(希伯来神话)致那悠闲的日常 连载中
(希伯来神话)致那悠闲的日常
浑水八爪鱼
在遥远过往的天堂路西菲儿过着他悠闲日常的日子这里有着友情与亲情的陪伴但也有着传言中已经固定的命运。但无论如何,就让我们先享受这份独一份的欢声......
8.9万字3个月前