数学联邦政治世界观
超小超大

Woodin对Reinhardt Cardinals与ZFC

Woodin对Reinhardt Cardinals与ZFC不相容的证明

Stationary Splitting(special case):令λ 为不可数的正则基数(regular cardinal), 则对于任意的正则基数 κ ≤ λ 都存在一个函数 S:κ → P(λ) 使得 range(S) 是一个对 {ζ<λ│cf(ζ)=ω} 的partition, 特别的, range(S) 中每一个元素都是驻集. cf(x)指的是x的共尾性(cofinality).

Elementary embedding: 令N, M为某语言L的模型, 我们说j:N → M 是一个(nontrivial) elementary embedding, 当且仅当, 对于任意的L-formula φ(υ₁,. . .,υₙ) 和 α₁,. . .,αₙ ∈ N,N╞ φ[α₁,. . .,αₙ] ⇔ M╞ φ[j(α₁),. . .,j(αₙ)].

例:假设measurable cardinal存在, 那么存在一个nontrivial elementary embedding j:V → M . 假设存在一个nontrivial elementary embedding j:V → M , 那么第一个被j移动的的序数(写作crit(j), the critical point of j)是一个measurable cardinal.

我们可以要求模型M越来越像V, (比如在可测基数的情况里,Vκ₊₂ ⊈ M, 所以M就没有特别像V), 来得到各种各样的 j:V → M,其中crit(j)就是可测基数之上的各种基数 (例如要求 Vᵧ ⊆ M , crit(j)就是 γ-strong cardinal).

自然的, 我们可以考虑"终极"的"像V性质", 即M=V. 这个可能性由Reinhardt提出, 若(nontrivial) elementary embedding j:V → V 存在, 那么crit(j)就叫做Reinhardt cardinal. 在这个可能性提出后不久, Kunen就证明了著名的Kunen Inconsistency: 假设选择公理, 那么如果 j:V → M 是一个nontrivial elementary embedding, 那么 V ≠ M. 目前我们尚不知道这个定理在没有选择公理的情况下成不成立. Reinhardt cardinals在ZF下的存在性问题是当下集合论和数学哲学中的一个至关重要的open problem.

本文我们将证明如下(用自然语言写下的)命题: "nontrivial elementary embedding j:V → V 不存在. "

在证明这个命题前, 我们先考虑我们需要证明的是什么. 由于j的定义域是全部V, 所以j必然地会是一个proper class, 所以关于j的命题都无法从字面意思上在ZFC里表达出来. 在其他大基数的情况下, "存在elementary embedding j:V → M "这个二阶claim都有等价的一阶formulation, 比如可测基数的情况下, 这个claim等价于"存在一个基数 κ , 使得 κ 上存在一个nonprincipal κ-complete ultrafilter". 我们下面证明"nontrivial elementary embedding j:V → V 不存在"这个claim不存在等价的一阶formulation.

proof: 假设Reinhardt cardinal存在, 令κ 为最小的Reinhardt cardinal, 并且假设这个j是first-order definable的, 那么 j(κ) 也是first-order definable的. 此时因为 κ∈V 根据elementary embedding的定义我们有:V├ κ is the least Reinhardt cardinal ⇔ V├ j(κ) is the least Reinhardt cardinal. 但是根据定义, j(κ)>κ,得到矛盾. ⊣

所以为了能表述"nontrivial elementary embedding j:V → V 不存在. "这个命题, 我们转移阵地到能表达二阶概念的集合论, GBC (Godel-Bernays set theory with Choice). 同时, 我们留意到"j is elementary"有一个等价的一阶formulation, 这个结果由Gaifman证明:

Fact(Gaifman):如果j:N → M 是一个 Σ₁-elementary embedding(意思是j只保证两个模型间的 Σ₁ 语句真值相同. Σ₁ 语句的真值是一阶可定义的), N与M都满足ZF, 那么j就是一个elementary embedding.

所以我们所需要证明的命题如下: (GBC) "不存在一个Σ₁-elementary embedding j:V → V ." 等价地, 我们证明, "如果 j:V → M 是 Σ₁-elementary embedding, 那么 M ≠ V "

证明:

令κ=crit(j) , 我们考虑如下序列:(κ,j(κ),j(j(κ)),. . .jⁿ(κ),jⁿ⁺¹(κ). . .) . 令 λ=supₙ<ωjⁿ(κ) . λ⁺ 是一个后继基数, 所以在选择公理下 λ⁺ 是一个不可数的正则基数. 所以根据Solovay splitting, 我们可以找到函数 S:κ → P(λ⁺),使得 range(S) 是对 W={ζ<λ⁺│cf(ζ)=ω}的一个partition, 其中每一个集合都是 λ⁺ 中的驻集. 我们留意到 j(λ)=λ : 因为j(λ)=j(supₙ<ωjⁿ(κ))=supₙ<ω(j(jⁿ(κ)))=λ . 此时注意:λ⁺ ≤ j(λ⁺)=(λ⁺)ᴹ ≤ λ⁺ (中间的等号是因为j是elementary embedding). 所以 j(λ⁺)=λ⁺ .

我们将用反证法证明命题. 我们现在假设M=V , 并最终导出矛盾.

因为"存在函数S:κ → P(λ⁺),使得 range(S) 是对 {ζ<λ⁺│cf(ζ)=ω} 的一个partition, 其中每一个集合都是 λ⁺ 中的驻集"是一个一阶语句, 所以j将会保留这个语句的真值, 即: "存在函数 j(S):j(κ) → P(j(λ⁺))=P(λ⁺),使得 range(j(S)) 是对 {ζ<λ⁺│cf(ζ)=ω} 的一个partition, 其中每一个集合都是 λ⁺ 中的驻集". 特别地, 因为 κ∈j(κ),所以 j(S)(κ) 也是 λ⁺ 中的一个驻集.

定义C={ζ<λ⁺│j(ζ)=ζ∧cf(ζ)=ω} . C是 λ⁺ 的一个unbounded,ω-closed的子集(练习). 我们有如下事实:

j(S)(κ)∩C ≠ ∅,这是因为C是一个club和 {ζ<λ⁺│cf(ζ)=ω} 的交集,而其中 j(S)(κ) 又是后者的驻子集.

那么此时,因为C 是 {ζ<λ⁺│cf(ζ)=ω} 的子集,而后者又被拆分为 S(α),α<κ ,所以肯定存在某一个 Sα₀ 与 j(S)(κ) 相交。

由于j(S)(κ)∩S(α₀)包含的都是共尾性为 ω 的序数, 所以 (j(S)(κ)∩S(α₀))∩C 不为空.

令ζ₀ ∈ (j(S)(κ)∩S(α₀))∩C . 因为这个 ζ₀ ∈ C,所以 j(ζ₀)=ζ₀,同时,因为 ζ₀ ∈ S(α₀),根据j的elementarity, 我们有 j(ζ₀)=ζ₀ ∈ j(S(α₀))=j(S)(α₀) . 可是现在问题来了: 我们前面说到过, 函数 j(S):j(κ) → P(j(λ⁺))=P(λ⁺)使得 (j(S)) 是对 {ζ<λ⁺│cf(ζ)=ω} 的一个partition. 所以 range(j(S)) 应该是两两不相交的. 但是我们刚得到了 ζ₀ ∈ j(S)(κ)∩j(S)(α₀) 矛盾. 所以在选择公理成立的情况下, Reinhardt cardinal不存在. ⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

永远停驻于那个夏天吧 连载中
永远停驻于那个夏天吧
4000時
请关注四千时谢谢喵【自留oc向】第一次在话本写东西!这是纯oc向的小说てす!一起去鬼屋探险吧!杂乱剧情注意‼️多结局注意❗️男频剧情️,女频......
0.7万字2个月前
时光机恋曲 连载中
时光机恋曲
参宿列队
刘文和一个异国女孩拯救时空的故事,不甜不要钱。
3.3万字1个月前
(无限流)我就是想交个朋友 连载中
(无限流)我就是想交个朋友
麦穗花
【欢迎来到无限世界[域],在这里,特殊能力唾手可得,死亡更不是梦想,随时随地,身临其境,尖叫和欢笑,惊骇与心动,让我们——娱乐至死!】(ㅍ_......
1.3万字2个月前
幻境……春 连载中
幻境……春
绘离
(一个作者幻想出来的美好世界…)收录了三个稿件,会出现霉运体质。
0.2万字2个月前
不是向阳花 连载中
不是向阳花
听音不见仙
女主:薛茗
0.7万字2天前
异世界图书馆 连载中
异世界图书馆
镜蝶
〈别名:世界图书馆与少女梦谈〉一个偏远地区流传着一个传说,满月当空时,在荡漾着月辉的河中放下一只纸船,借着月光让纸船载着你一部分的灵魂,为你......
38.6万字昨天