数学联邦政治世界观
超小超大

乘法子集

代数数论是以剩余类环为基础的环理论,是一种具体的环论,按照抽象的方式学习,很难理解各种概念的含义,结果越是学习越是迷惑,好像就知道了些名词,不知道怎么用。那么这一次就通过例子来学习。

首先是乘法子集的概念,他的定义是环R 中的乘法封闭集 x,y ∈ A ⇒ xy ∈ A 而且假定 0 ∉ A ,通常考虑交换环。实际上看到这个概念就应该意识到他是一种类似于理想的结构。

考虑基本的例子,剩余类环

0,1 → 1=1²=1ⁿ

0,1,2 → 1=1ⁿ,2,2²=1,2³=2,2²ⁿ=1,2²ⁿ⁺¹=2

0,1,2,3 → 1=1ⁿ,3,3²=1,3³=3,3²ⁿ=1,3²ⁿ⁺¹=3

可以发现乘法子集包含的元素为单个元素自身,以及这个元素的幂,还有多个元素的积。

所以乘法子集可以看作特定元素通过乘积结构生成的集合,也就是一种生成式的定义,就像开集一样,确定生成子,通过集合运算生成开集。如果熟悉Fσ,Gσ 的构造方式,就知道集合通过集合运输扩张可以构成一种生成序列,建立层垒结构。

这里是通过乘积元素生成。由此,也可以建立层垒结构。所以,环与集合具有相似之处。

那么对于任意的剩余类环,他的乘积子集就是

{α,αⁿ,b,bⁿ,. . .,αb,αᵐbⁿ,. . .}

这就是他的生成结构,自然的,我们可以定义这种结构为一种运算,即理想的乘积,这里是乘法子集的乘积。

由此,或许就能明白为什么理想的运算和通常的运算如此不同,因为理想是一种乘法生成结构,他和加法生成是不一样的。尤其是对于数环而言,乘法的生成结构必然与素数有关。

实际上对于有限域而言,当我们从一个素数出发,不断自乘积,总能获得所有元素。这就是乘法性质上的差异。

定义点‬

(x,y)=(α,3α mod 5)

于是获得

(1,3)=(1,3¹ mod 5)

(2,4)=(2,3² mod 5)

(3,2)=(3,3³ mod 5)

通过程序计算并绘图

(2,4) (1,3) (3,2) (5,3) (4,1)

(α mod(bα,5))

α=[1,2,3,4,5]

b=3

1 ≤b≤5 步长:1

通过这个代码可以获得元素幂的规律,上图给出的是3ⁿ mod 5

由此可以直接探索单元素生成乘法子集的性质。这就是数论的例子。其中αᵖ=α mod p

(α mod(bα,c))

α=[1,2,. . .,c]

b=1

c=11

改进了一下,用这个代码更高效,只需要调整参数c的值就行了,代表了剩余类环的性质。

效果相当不错,其实制作为视频比较好,简单看几张图

1ⁿ

2ⁿ

3ⁿ

4ⁿ

5ⁿ

可以明显的看到周期性,这种周期性就是数论规律αᵏ mod n

所以数论的复杂性就在于这些周期性的图上面,多种周期的叠加会导致非常复杂的规律,这些周期本身与素数有关,素数的规律性极差,超乎人们的理解,所以数论规律也是超出人们的理解的。只能通过计算来把握。

只不过,上面体现的是幂的规律,乘积的规律没有包含其中。可以考虑把两个生成子绘制在一幅图上,获得多生成子情形。

(α,mod(bα,c))

α=[1,2,. . .,2c]

b=3

c=5

(α,mod(dα,c))

d=2

上图代表了(3ⁿ,2ⁿ) 规律显得有些复杂了,从这个例子也能发现,理想的计算很困难,每添加一个生成子,计算量都会暴增。

<2,3>=[2ⁿ,3ⁿ,2ᵐ3ⁿ]

上图没有考虑交错项2ᵐ3ⁿ 就已经很复杂了。

总之,也算是实现了特定数论规律的可视化,相当不错,从图上看,有限数环中元素的幂具有明显的规律,这就是数论理论的基础,有规律才能刻画规律。而理想则呈现了复杂的特征,所有即使是有限环,他的理想结构也是非常复杂的。这可能就是代数数论的抽象之处,不能按照常规的印象来学习,因为印象是错的。需要通过计算来获得正确的印象。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

快穿之芙蓉帐暖 连载中
快穿之芙蓉帐暖
玉樱樱
(快穿+系统+虐渣+爽文+演戏+大美人+渣女+男主碎片)渣女梨依儿快穿到各个小世界围绕在各个大佬周围。完成任务后就不甩他们了,主搞自己的事业......
3.2万字2个月前
愿祈世安 连载中
愿祈世安
糖糖就是俺
—“黑暗后的黎明名为希望.”—“是绝望亦或是希望?”......唯祈愿世安,奈何世不遂她所愿.
0.5万字2个月前
来自遥远云境国度的星月神话 连载中
来自遥远云境国度的星月神话
糖裕
遵守世界法的萝甜甜掌管星星法则,一直爱护着可爱的子民。从西界到东海的旅途由此展开。与一群可爱的同胞,拥有友谊,发现爱情,守护亲情。
0.5万字2个月前
八点之后 连载中
八点之后
猹狸猫
古铜巷里的三兄妹,看似商人,实则在治愈着伤心人,每到晚上八点之后,一行人便踏上了夜行之路,每每一件物品物归原主,一件奇异事件便在悄然发生。(......
1.9万字2个月前
六芒星之旅 连载中
六芒星之旅
白井空慕
即将成为下一位新神的白玖,在历练时经历的种种事情与磨难,最后迎来的会是什么?是要坚持自己的决定与旧神卡维斯特抗争还是归顺于他,成为傀儡?
2.1万字2个月前
虚妄之国 连载中
虚妄之国
儚镜
如果在这个世界上,身边的所有人都否认一个你熟识的人的存在,且看不见她时,她找上了你,你该怎么办?是平行世界?亦或是自己的臆想?这个世界就是虚......
0.5万字1个月前