数学联邦政治世界观
超小超大

性质跟结构的区别

本文参考了 nlab: stuff, structure, property

性质跟结构都是对一组对象而言的,比如集合、代数等,而当我们考虑满足某某性质或者有某某结构的对象时,这些对象就在原本的对象中形成了一个子集,在这种意义下我们确实难以区别“性质”跟“结构”这两个词。

假设我们拥有一组对象,我们不能单单考虑对象本身,还应该考虑对象之间的态射,不过我们真正要考虑的是对象之间的同构,因为正是同构给出了对象之间本质,这意思是它告诉我们哪些对象是一样的,哪些是不一样的。所以我们得考虑这组对象所形成的广群 (groupoid). 然后考虑性质 P 或者结构 S,满足性质 P 跟结构 S 的对象们会在这个广群中形成两个子范畴,在子范畴里面的态射也就是同构,它们得保持这种性质 P 或者结构 S. 比如,等下我们会知道的拓扑对于一个集合而言是结构 S,集合之间的同构只要是双射就好了,但拓扑空间之间的同构得是保持拓扑结构的同胚,这不能是随便一个双射。

“性质”比“结构”更内蕴 (intrinsic).

如果根据某条断言 X (比如具有拓扑,有单位元等等) 我们得到原来范畴C 中的一个子范畴 D ,这个子范畴里面的同构恰好等于原来范畴里面的同构即

lsomᴅ(α,b)=lsomᴄ(α,b)

那么 X 就是一个性质 P. 因此我们可以将性质理解为可以被对象之间的同构自动保持的某类断言。

如果我们有真包含

lsomᴅ(α,b) ⊂ lsomᴄ(α,b)

那么 X 就是一个结构 S.

那么很显然了,我们上面说的具有拓扑则是一个结构。而假如你要将ℝ 上的有限维向量空间变成一个线性赋范空间,那么这就变成了一个性质而不是结构了,这是泛函里面的一个定理。

交换性对于一个结合代数而言也是一个性质。

单位元对于一个结合代数而言也是一个性质,这个对高阶的结合代数比如Eₙ-algebra 也对。

在 Lurie 的 Higher Algebra 里面,他还证明了稳定性 (stability) 对无穷范畴而言也是一个性质

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

惊世狂妃:皇叔一宠到底 连载中
惊世狂妃:皇叔一宠到底
庄庄2
洞房花烛夜被休,丈夫诬陷她和小叔子滚床单,渣爹毒死她,渣妹还要将她分尸?不是吧不是吧?都这个年代了,还有人受这窝囊气呢?21世纪戏精影后降临......
218.4万字1年前
涧春 连载中
涧春
五香瓜子仁
[已签约]一场让所有人匪夷所思的穿书,沐季珠以为的穿书,其实是夜渊一千两百年来的等待。
15.5万字1年前
我在末世世界开超市 连载中
我在末世世界开超市
晓晓945
叶淑涵一觉醒来发现自己穿越了,穿到了末世世界,为了能够存活下去,她必须根据系统的说法经营超市,把一间小卖部升级成超市商场,通过一步步升级也发......
64.7万字7个月前
双喜:麓站深渊 连载中
双喜:麓站深渊
喜陌缘
遥远的宇宙深渊:启源之争开始。一直被认为是低等星球的地球人也加入了纷争?当一个个属源拥有者出现在地球,会发生什么?病娇喜墨哲&腹黑喜煦辰沉于......
2.6万字6个月前
小透明的小故事 连载中
小透明的小故事
。_751274786529310802
来来来,看一下小故事。
12.1万字4个月前
我在万族开后宫 连载中
我在万族开后宫
鱼竿水
【无敌大女主+后宫+爽文】悦无双是一拥有无敌力量的一名女子。世界进入修仙时代,世界之外万族现世。而她,悦无双!要在这万族中开后宫!
2.8万字3个月前