数学联邦政治世界观
超小超大

数学三角形定理与中心集群(三)

由上图我们设BC,AD交于无穷远点P∞,从而P∞的极线为FH,过点O,于是P∞和O共轭,而三点形DCP∞外切于椭圆,于是OD,OC共轭,即AC,BD共轭。证毕。

引理也证明一下吧:

如图,三角形JKI外切于二次曲线Γ,L为J的共轭点(即L在HG上),则LK,LI共轭。

证:

设ML与Γ交于另一点N,NH,GM交于P,NG,HM交于O。则PLO是自极三点形,于是PJO共线,而O,L,K的极线分别为LP,OP,MG,它们共点于P,于是O,L,K共线,同理P,L,I共线,而LK的极点是P,P在LI上,于是LK,LI共轭。证毕。

几何角度 可以这样理解:

如图 ,抛物线是和无穷远直线l∞(红色直线)相切的二次曲线, 设切点为F∞。

而题主图中的坐标系比较特殊,它使得抛物线的对称轴垂直于x轴,事实上本质是使得无穷远处的切点为y轴上的无穷远点。那么我们要证明的是“P的横坐标确定,GH的斜率也随即确定”。而注意到,斜率k确定了实际上是确定了这条弦所在的直线上的无穷远点(1,k,0)(齐次坐标表示)。,于是我们要证明的就转化为“P的横坐标确定,GH上的无穷远点也随即确定”。

为了解释这个问题我们来先看看中点的等价定义:

线段AB的中点为 AB所在直线上的无穷远点M∞,与A,B构成的点列的第四调和点,即存在中点P,使得(AB,PM∞)=-1。

结合极线的调和性,就可以这样定义二次曲线的弦的中点:弦所在直线上的无穷远点的极线与弦的交点。

好了,那么回到原来的问题,由抛物线的性质,弦GH所在直线的无穷远点I在F∞的极线上,这说明无穷远点I的极线经过F∞,即I的极线平行于y轴,垂直于x轴,这意味着I的极线上的点的横坐标是唯一的,事实上这一结果才是上文提到的“使得无穷远处的切点为y轴上的无穷远点”的作用。

而由中点的定义我们知道这条线还过中点P,而这时候如果确定了P的横坐标,意味着这条极线也就确定了,那么极线对应的极点P自然确定,即确定了GH所在直线上的无穷远点,亦即确定了GH所在直线的斜率。证毕。

对于焦点在x轴上的抛物线,结论变为“中点的纵坐标确定,则弦所在直线斜率随即确定”(这里默认斜率存在的情况),可以如法炮制。

向量AC·向量BD=(向量BC-向量BA)·向量BD

=向量BC·向量BD-向量BA·向量BD

=(BD² BC²-DC²)/2-(BD² BA²-AD²)/2

=[(BC² AD²)-(DC² BA²)]/2。证毕

利用这个定理和内积的定义就可以求对角线夹角余弦值了即

cosθ=[(BC² AD²)-(DC² BA²)]/(2AC·BD),此外,平面内,不管是凸四边形还是凹四边形都成立,空间里即对于三棱锥这个定理也成立,因为放在空间中证明过程是一样的,并且如果C在BD上也是成立的。

1)证明:

如下图,由内切圆性质,易知A,P,N共线且AN是∠DAB的平分线,其他四条蓝色直线同理。为方便,我们约定四边形A,B,C,D的四个内角分别为∠A,∠B,∠C,∠D

于是∠JPN=∠APD=180°-(∠A ∠D)/2

∠JLN=180°-(∠B ∠C)/2

故∠JPN ∠JLN

=360°-(∠A ∠B ∠C ∠D)/2=180°

于是J,P,N,L四点共圆。

2)

由1)得到∠JPN=∠APD=180°-(∠A ∠D)/2

∠JLN=180°-(∠B ∠C)/2

于是由四边形JPNL为矩形可以得到

∠JPN=∠APD=180°-(∠A ∠D)/2=90°

于是∠A ∠D=180°,故AB∥CD,同理可以得到另外一组AD∥BC,于是四边形ABCD是平行四边形。

本文从欧氏几何角度对完全四边形的若干常见的基本性质进行讨论。

笛沙格对合定理‬

如图,同心圆过无穷远直线上的虚圆点I,J,无穷远直线(蓝色)关于同心圆的极点是同一点O,这说明这些同心圆属同一个二次曲线系,即OI×OJ λ(IJ)²=0, 因此 由线束的笛沙格对合定理知过A作的两切线属于同一对合的对应直线,由此得到二次曲线Γ(未画出)上的对合,故连线过定点。

依曼海姆定理(伪内切圆性质) 及内心性质(有的地方戏称为鸡爪定理)可得 H为内心及HT=TC且∠ACT=∠ACB ∠BCT=∠ACB ∠CAT=∠ADB

则AH/AT=HD/HT⇔AH/HD=AT/HT⇔AC/CD=AT/HT⇔AC/CD=AT/CT⇔sin∠ADC/sinA/2=sin∠ACT/sinA/2=sin∠ADB/sinA/2⇔sin∠ADC=sin∠ADB ,显然

习题

设非退化二阶曲线Γ:

S≡XᵀMX=0,记IᵀMJ=JᵀMI=Sij,平面上三点A,B,C(迳用字母表示其齐次坐标),设由Γ确定的配极变换为φ,则φ(A)=MA,φ(B)=MB,φ(C)=MC,设ABC的配极三点形为A'B'C'(字母已对应好,即A↔A',B↔B',C↔C'),则

A'=MC×MB,B'=MA×MC,C'=MA×MB,则直线AA'=A'×A=MC×MB×A=(AᵀMC)MB-(AᵀMB)MC=SacMB-SabMC,

即AA'=SacMB-SabMC 同理直线

BB'=SbaMC-SbcMA

CC'=ScbMA-ScaMB,则显然AA' BB' CC'=0,故三线共点。

透视中心的极线为透视轴利用配极原则即可。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

清冷钓系美人每天都在修罗场 连载中
清冷钓系美人每天都在修罗场
栖行止
谢笺屿长发窄腰,拥有一双纯净澈透的冰蓝色凤眸,浑身散发的清冷圣洁气息,让他稳坐s市首校磬华大学高岭之花的宝座美人清净自持,端方矜贵,走到哪里......
110.6万字6个月前
ch:平行恶世界人到来 连载中
ch:平行恶世界人到来
任彼安
先看第四章!人设cp!全员恶人的平行世界与主世界开始融合,相敌,相对,相帮,相助,背后又是何人在操控,而最后的结局是完全融合还是彻底分离呢?
5.9万字6个月前
一个人族少女的事务局日常 连载中
一个人族少女的事务局日常
南棠Xinxin
前期讲述一位人族少女和她的朋友们在特殊组织空行事务局的工作和生活日常
6.8万字5个月前
虚妄之国 连载中
虚妄之国
儚镜
如果在这个世界上,身边的所有人都否认一个你熟识的人的存在,且看不见她时,她找上了你,你该怎么办?是平行世界?亦或是自己的臆想?这个世界就是虚......
0.5万字5个月前
龙拳3:龙拳小子 连载中
龙拳3:龙拳小子
77铜锣烧_
【跆拳道运动员竞技+男暗恋女+团宠+无脑洞+慢节奏+宠妹+师父+教练+男强+无绿茶】  『受宠公主vs偏执傲娇跆拳道大佬』有成长是甜文女主视......
20.7万字3个月前
小刘的发疯日常 连载中
小刘的发疯日常
紫薯LO
神神经经,没有烦恼!啊啊啊啊!
0.5万字2个月前