数学联邦政治世界观
超小超大

运算律

【1】若A∪B=B,则A⊆B。

将属于集合A,集合B的元素全部包含进来,得到的集合却只包含集合B中的元素,说明集合A中的元素在集合B中都能找到,即A⊆B。

【2】若A∩B=B,则B⊆A。

集合A,集合B的公共元素组成的集合,居然能与集合B等价,那就说明集合B中的元素在集合A中都能找到,即B⊆A。

【3】如果A⊆B,则A∪B=B。

集合A中的元素在集合B中都能找到,那把集合A,集合B全部包含进来后,集合A中的元素总会因为重复而被删掉,所以得到的只有集合B的元素。

【4】如果B⊆A,则A∩B=B。

集合B中的元素在集合A中都能找到,说明集合B中的所有元素都是两个集合的公共元素。

【5】A∪(A∩B)=A。

集合A和集合B的公共元素,必然属于A。

所以A∪(A∩B)=A∪A=A。

【6】A∩(A∪B)=A。

A∪B中的元素包括集合A和集合B中元素总和,包括属于A的部分和属于B的部分。

其中,属于A但不属于B的部分与A没有交集。

所以A∩(A∪B)=A∩A=A。

【7】A∩(B∩C)=(A∩B)∩C。

左右两边都表示,三个集合公共元素组成的集合。

【8】A∪(B∪C)=(A∪B)∪C。

左右两边都表示,三个集合的所有元素全部包含进来。

【9】A∩(B∪C)=(A∩B)∪(A∩C)。

集合B∪C就是将集合B,C中的元素全部包含进来,那其中就包含B中的和C中的。

集合A与“B中的”取交集就是A∩B,与“C中的”取交集就是A∩C。

两个全包含,那就是(A∩B)∪(A∩C)。

【10】A∪(B∩C)=(A∪B)∩(A∪C)。

A∪B中包含A,B中的所有元素,A∪C中包含A,C中的所有元素。

这两个取交集:两个都包含A中所有元素,A中的元素肯定是交集的一部分。一个包含B,一个包含C,那B和C的交集肯定是交集的一部分。

【11】Cu (A∪B)=(Cu A)∩(Cu B)。

等号左边所表示的集合,是将集合A,集合B中包含的所有元素全部删除掉,剩下的元素称为外围元素(这是我自己起的名字,不是专业术语)。

等号右边所表示的集合,是两次被删元素的公共元素。第一次被删的元素包括集合B中的元素和外围元素,第二次被删的元素包括集合A中的元素和外围元素。显然,两次被删的公共元素就是外围元素。

所以等号两边表示的元素是等价的。

【12】card(A∪B)=card(A)+card(B)-card(A∩B)。

card(R)表示集合R中元素的数量。

A∪B就是将集合A,B中的元素全部包含进来。但由于集合有“互异性”,要将重复的元素删掉。所以A∪B的元素个数,就等于集合A和集合B的元素个数之和,减去A∩B的元素个数。

【13】card [Cu(A∪B)]=card(U)-card(A)-card(B)+crad(A∩B)。

Cu(A∪B)就是要将全集U中删掉A∪B部分,但由于A,B的公共部分被删了两次,所以需要加回一次。

【14】若一个集合中有m个元素,则该集合有2^m个子集,有(2^m)-1个真子集。

空集是任何集合的子集。

当m=0时,只有一个空集作为子集。此时,符合上述结论。

当m=1时,集合本身和空集可以作为子集。此时,符合上述结论。

当m>1时,集合的子集可以是任意数量元素的排列组合。每多一个元素,多出来的元素可以与原来的每个集合组合在一起,形成一个新的集合。

{a}的子集包括∅,{a},N=2。

{a,b}的子集必然包括上面的∅,{a},多出来的元素b,均可与这些集合中的元素组合在一起,形成一个新的集合:{b},{a,b},N=2+2=4。

{a,b,c}的子集必然包括上面的∅,{a},{a,b},{b},多出来的元素c,均可与这些集合中的元素组合在一起,形成一个新的集合:{c},{a,c},{a,b,c},{b,c},N=4+4=8。

每多一个元素,多出来的元素均可与前面求出的集合中的元素组合在一起,形成一个新的集合。

所以元素每增加一个,子集数量就要x2。

所以有m个元素时,子集数量为2^m。

真子集数量就是去除掉相等的那个集合,因此真子集总比子集少一个,所以真子集数量为(2^m)-1。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

契约的血祭坛(重制版) 连载中
契约的血祭坛(重制版)
心心熠熠
多世界✓主打西幻和科幻✓架空世界宗教有,魔法有伏笔多作者记性不好角色头像来源网络,侵权删(这个tag真的怎么打啊)
1.4万字2个月前
笑花的开挂人生! 连载中
笑花的开挂人生!
求放过呆萌花
笑花和系统还有pws的搞笑故事,笑花和系统在等你来!
0.4万字2个月前
玄界:生命与自然双灵能,在玄幻星际杀疯了! 连载中
玄界:生命与自然双灵能,在玄幻星际杀疯了!
俺是两点半老师哩
『科技与灵能共存世界观,讲述的是女主两点半在玄幻世界经历各种各样有趣的事,结识许多的朋友,大女主,可以嗑cp,没有男朋友设定√,但是有很多男......
5.6万字2个月前
虚假的象牙塔 连载中
虚假的象牙塔
趁醉眠
“当我让他的画享誉世界时,我将取走他的生命——毕竟伟大的作品,是不可再生的,不是吗?”这是理想的象牙塔,也可以是一本充满欲望的故事书贪婪的饕......
0.3万字1周前
海棠妖修录 连载中
海棠妖修录
馒头跳绳
雨落花间,晶莹落,星光点点,应不凡。一日化人,入局中,身为棋子不解因。人间卧虎又藏龙,人间怎还有那妖魔鬼怪,作乱一方,成了那人间炼狱。(希望......
0.8万字7天前
碎梦之白鲸神明 连载中
碎梦之白鲸神明
白页茉
天空中的鲸鱼……在海里泡着的云朵……
2.3万字3天前