数学联邦政治世界观
超小超大

反证法

数学思想

以下是正文:

反证法是一种间接证法,它不直接证明命题为真,而是先假设原命题为假,通过推出矛盾,从而推定原命题为真的证明方法。

〖例1〗证明:函数y=cos√x不是周期函数。

含有“不是”字样,典型的反证法题型。

【证明】

假设函数y=cos√x不是周期函数

即存在T≠0,使cos√(x+T)=cos√x

令x=0,得T=4k²π²

不妨设k>0,令x=4π²,得:

√(4π²+4k²π²)=2mπ(m∈Z)

所以√(1+k²)=m(m∈Z)

但是当k>0时,k<√(1+k²)<k+1,因此√(1+k²)不是整数,矛盾。

假设不成立,故cos√x不是周期函数。

〖例2〗求证:√2是无理数。

因为无理数的定义是“不能写成p/q形式的数”,含有“不能”字样,可以考虑用反证法进行证明。

【证明】

假设√2不是无理数。

则√2是有理数或虚数。

(√2)²=2>0,√2不是虚数。

所以√2是有理数,设√2=p/q

其中,p,q∈Z且p,q互质。

若q=1,则p=√2,此时p不为整数。

若q>1,由√2=p/q得:

2=p²/q²

p²=2q²

∵q为整数

∴q²为整数

∴p²为2的倍数

∵p为整数

∴p为2的倍数

令p=2k(k∈Z)得:

4k²=2q²

∴2q²为4的倍数

∴q²为2的倍数

∴q为2的倍数

∴p,q有公因数2‬

这与“p,q互质”矛盾,假设不成立,故√2不是有理数。

故√2为无理数。

〖例3〗

若p>0,q>0,p³+q³=2,证明:p+q≤2.

此题直接由条件证明p+q≤2比较难,因此用反证法进行证明。

【证明】

假设p+q>2

∵p>0,q>0

∴(p+q)³=p³+3p²q+3pq²+q³>8

又∵p³+q³=2

∴3p²q+3pq²>6

∴3pq(p+q)>6

∴pq(p+q)>2

∵p³+q³=2

∴(p+q)(p²-pq+q²)=2

∴pq(p+q)>(p+q)(p²-pq+q²)

∵p+q>2>0

∴pq>p²-pq+q²

∴(p-q)²<0

这显然不可能,矛盾。

假设不成立,故p+q≤2。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

源于创作的故事 连载中
源于创作的故事
创造者小桉
故事中,一个15岁的女孩dawn是一位小作家,某天,她笔下的人物来到了她的世界,他们会发生怎样的故事呢
1.8万字5个月前
结良 连载中
结良
妻华
两个人相爱的故事
4.3万字3个月前
穷途(骗局3……0) 连载中
穷途(骗局3……0)
糊糊小白
欢迎各位来到“穷途”游戏,13位玩家齐聚一堂,遵循山羊的指引,携手闯关,只为取得塔顶的奖励,胜利者只有一位,谁会是最终赢家?注意:请不要相信......
7.4万字3个月前
重逢及相识 连载中
重逢及相识
Luan鸾梨
全都是作者幻想的,与实际不符,勿喷,作者新手小白,文笔不算多好既然我们别来无恙,那么就别过了吧下一次重逢即是相识--------------......
0.3万字2个月前
慕容归零 连载中
慕容归零
丽志_25672919270903971
慕容前世嫁给了蔡飞,蔡飞家暴直到而死都不明白是,原来蔡飞和慕楠早就勾搭在一起了。原来墨卿才是真正的爱我的,把她抱在怀里哭。蔡飞和慕楠你把墨卿......
5.1万字4周前
万人嫌获得满级金手指后 连载中
万人嫌获得满级金手指后
很讨厌上学
许念珠苦了半辈子才得知是因为被人夺走气运,且看她获得金手指后爽翻天的日常。
2.1万字6天前